
Message Authentication Codes

Reading: Chapter 4 of Katz & Lindell
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  Bob receives a message  from Alice, he wants to know
  (Data origin authentication) whether the message was

        really sent by Alic
    

  
e.

  (Data integrity) whether t  h
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 e message has been modified.

  Two solutions:
  Alice attaches a  (MAC)

        to the message (using a symmetric key to compute the MAC).
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( )

  Message authentication protocol:
   1.  Alice and Bob share a secret key .
   2.  To send a message , Alice computes a tag : ( )
         and sends ,   to Bob.

   3.  On receiv

Basic idea of MAC
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( )ing ,  ,  Bob checks whether  ( ).
        If so, he accepts the message; otherwise, he reje
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  code (MACThe tag  is called a .
  Security requirement: co
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    valid pair  ( ,  ( )) without knowing the key . kx MAC x k
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 A MAC scheme is a triple ( ,  ,  ):
Key generation algorithm:  On input 1 ,  outputs

       a key {0,1} .   
Tag generation algorithm :   On in
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MAC Scheme (formal definition)
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 a key  and a message
       ,  outputs a tag .  We write ( ).   
       (  is the messag
   

e space.  Assume {0,1}  or {0,1} .)
Verification algorithm :   On input a key ,  a   m
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       a tag , algorithm  outputs 1 (meaning ) 
       or 0 ( ).   ( , ) 0 or 1.

 ,  are probabilistic algorithms.    
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( )

 (used when  is deterministic):

1 if ( )
           ( , )

0 otherwise

 If  {0,1} ,  the scheme is said to 
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 Fixed-length MAC schemes are easier to construct.

 General MAC schemes for {0,1}  can be constructed from 
    fixed-lengt
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,

1. A key (1 ) is generated.
2. The adversary  is given inpu

Experiment MAC-Fo

t 1  and 

rge (

oracle access to ( ).
     may ask the oracle to compute tags

) :

Chosen-Message Attacks on MAC Schemes
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 for messages of its choice. 

    Let  be the set of all queries  has made to the oracle.
3.   event

f
ually outputs a pair ( ,  ).    

    (  tries to  a valid pair of message and tag.or ) 
MAC-For

e
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A m t
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, (  succeeds) if  and ( , ) 1.

 Remarks:  
     Adversary:  an adaptive chosen-message attacker.
     Forgery

ge ( ) 1 
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Definition:  A MAC scheme ( , , ) is  
 under an  (or 

existentially
unforgeable  adaptive chosen-message atta sick mpl

MAC security:  existential unforgeability 
under an adaptive chosen-message attack

Gen Mac Vrfy
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 such that

        Pr MAC-Forge ( ) 1 ( )
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 If a MAC scheme is secure, the probability is negligible that
     can forge a valid ( , ) with .

  However, it may be possible for  to forge a d  valid tag 
    fo

ifferent

 

Strong MAC security
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A t t
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r some message ,  where  is the tag returned by the oracle on .

  If no adversary is able to do so, the MAC scheme is .

  To formally define strong security, mo
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s follows:

      Let ( , ) :  ,   is the tag returned by the oracle on .
       succeeds if an only if it outputs a valid pair ( , ) .

  If  is deterministic, then "secure"  "strongly se

Q m t m Q t m
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MAC•
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 Let  be a pseudorandom function.  

 We will use  to construct secure MAC schemes in several steps.
  Secure fixed-leng  MAC schemes for messages of l   

 

 
t enh gt   
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Constructing secure MAC schemes
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fixed-length ( )
arbitrary-len

  Secure  MAC schemes for messages of length 
  Secure MAC schemes for  messages

 For simplicity, assume message length is a multiple of .
    (We can a
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 do padding to make this assumption true.)
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 Let  be a pseudorandom function.

 Fixed-length MAC scheme for messages of length :
 Key generation:  On input 1 ,  {0,1} .  
 Tag gene
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Secure MAC schemes for {0,1}
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        output the tag      : ( ).   

1 if  ( )  
 Verification:  On input ( , ),  ( , ) :
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 Let  be a pseudorandom function.

 Basic CBC-MAC works as follows:
 Key generation:    {0,1} .  
 Tag generation:  For key {0,1}  an

     
     d message {0,1} ,  
        par
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1 2 3 4

 It is important that  ( ) is fixed, or the scheme would be insecure.

 Also, the scheme insecure variabwould be  if message length is .
      Suppose

le
 : ( ) 

 

 
and : ( ).
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A FIPS and ISO standard.

  There are several variants of CBC-

One variant of CBC-MAC:

MAC. 
 

  Prepend the message  with its length  (as an -bit string) 
    an

  

CBC-MAC for arbitrary-length messages

m m n

•

•

•

d then compute basic CBC-MAC on the result.

  Remarks:
      There is a limitation on .

      It would be insecure if  is appended to the end of .
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( )2 1

1 2

1

  Generate two keys  ,  {0,1} .  

  To authenticate a message , let the tag be

           : basic-CBC-MAC ( ) . 

       

  One may use only one key  and generate 

Another variant of CBC-MAC
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  CBC-MAC is secure if  is a pseudorandom funTheo

  

ction.

In practice, block ciphers (such as DES

rem

, AES) are used.

:

Security of CBC-MAC (for arbitrary length)
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Authenticated Encryption

To ensure both secrecy and integrity
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,  

      Run (1 ) to obtain a key .
      The adversary  is given 1  and access to oracle ( ),
        and .
 

Experiment Enc-Forge ( ) :

outputs a ciphertext
     Let 

 

Unforgeable encryption 
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 .  Let  be the set of all messages that  
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  A symmetric-key encryption scheme is an 
    encryption scheme if it is CCA-secure and

a
 

ut
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hent
forgeable.

  We will construct an
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don: 
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Authenticated encryption scheme
•

• ption scheme from a 
    CPA-secure encryption scheme and a strongly secure MAC scheme.

  Three natural ways:
 Encrypt and authenticate  (insecure)
 Authenticate then encrypt (ins

     
e     cur

   
e)

  

•




  Encrypt then authenticate (secure)

  In the following slides, let  be a message,  an encryption key,
    and  a MAC key.
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  Sender: encrypt and authenticate  independently.  That is,
    the ciphertext is  where

              ( ),        ( )

  Receiver: given ciphertext , ,  do

,
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  Security:
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 If  is deterministic (e.g., CBC-MAC), then the scheme
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  Sender: authenticate  first and then encrypt  and the tag.
    Thus, the ciphertext is  computed as:

              ( ),        ( )

  Receiver: given ciphert

Authenticate then Encrypt
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ext ,  do

              ( ) and then check if ( , ) 1.

  A potential attack:
 Suppose PKCS#5 padding is used.  Suppose the receiver does:

         if    the
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 return a "bad padding" error
             the tag is incorrect  return a "bad mac" error.

The padding attack can be conducted to recover    t
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.
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  Sender: encrypt  first and then authenticate the result.  Thus,
    the ciphertext is  where

              ( ),        ( )

  Receiver: on receiving , ,  i

,
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