
Message Authentication Codes

Reading: Chapter 4 of Katz & Lindell

1

 Bob receives a message from Alice, he wants to know
 (Data origin authentication) whether the message was

 really sent by Alic

e.

 (Data integrity) whether t h

Message authentication
m•



 e message has been modified.

 Two solutions:
 Alice attaches a (MAC)

 to the message (using a symmetric key to compute the MAC).
message authenti

 Or

 sh

cation

e attac

code

hes

 a u signat

•


 to the message (using an
 asymmetric key to compute the signature

re
).

2

()

 Message authentication protocol:
 1. Alice and Bob share a secret key .
 2. To send a message , Alice computes a tag : ()
 and sends , to Bob.

 3. On receiv

Basic idea of MAC

k

k
m t MAC m

m t

•

=

()ing , , Bob checks whether ().
 If so, he accepts the message; otherwise, he reje

message authentication

cts it.

 code (MACThe tag is called a .
 Security requirement: co

)
mputat

km t t MAC m

t

′ ′ ′ ′=

•
• ionally infeasible to forge a
 valid pair (, ()) without knowing the key . kx MAC x k

3

 A MAC scheme is a triple (, ,):
Key generation algorithm: On input 1 , outputs

 a key {0,1} .
Tag generation algorithm : On in

 p ut

MAC Scheme (formal definition)

n

n
u

Gen Mac Vrfy

k
Mac

←

•





() *

 a key and a message
 , outputs a tag . We write ().
 (is the messag

e space. Assume {0,1} or {0,1} .)
Verification algorithm : On input a key , a m

k
l n

k
m M Mac t t Mac m
M M M

Vrfy k

∈ ←

= =
 essage , and

 a tag , algorithm outputs 1 (meaning)
 or 0 (). (,) 0 or 1.

 , are probabilistic algorithms.

 is deterministic.
 Correctness

val

 req

id
inv id

al k

m
t Vrfy

Vrfy m t
Gen Mac Vrfy

•

=


()
uirement: for every and ,

 , () 1.k k

k K m M
Vrfy m Mac m

∈ ∈

=
4

()

 (used when is deterministic):

1 if ()
 (,)

0 otherwise

 If {0,1} , the scheme is said to

Canon

be

ical verif

 a

ication

fixed-len MAC scheme for messaggt

h es of le

k
k

l n

Mac

Mac m t
Vrfy m t

M

=
= 


•

• =

*

ngth .

 Fixed-length MAC schemes are easier to construct.

 General MAC schemes for {0,1} can be constructed from
 fixed-lengt

 ()

h s

chemes.

l n

M

•

• =

5

,

1. A key (1) is generated.
2. The adversary is given inpu

Experiment MAC-Fo

t 1 and

rge (

oracle access to ().
 may ask the oracle to compute tags

) :

Chosen-Message Attacks on MAC Schemes

n

n

A

k

k G
A Mac

A

nΠ

←

⋅
 for messages of its choice.

 Let be the set of all queries has made to the oracle.
3. event

f
ually outputs a pair (,).

 (tries to a valid pair of message and tag.or)
MAC-For

e
4.

g

Q A
A m t
A

, (succeeds) if and (,) 1.

 Remarks:
 Adversary: an adaptive chosen-message attacker.
 Forgery

ge () 1

existen: an forge rytia .

l

kA A m Q Vrfy mn tΠ

•

== ∉





6

Definition: A MAC scheme (, ,) is
 under an (or

existentially
unforgeable adaptive chosen-message atta sick mpl

MAC security: existential unforgeability
under an adaptive chosen-message attack

Gen Mac Vrfy

()()(

,

)

y)
if for all polynomial-time adversaries , there exists a negligible function

 such that

 Pr MAC-Forge () 1 ()

or

secur

 Pr 1 1: {0,1} ()

where th

e

e

kM

A

n n
k u

ac

A
negl

n negl n

Vrfy A k negl n

Π

⋅

= ≤  

 = ← ≤ 
output of , (,), satisfies .A m t m Q∉

7

 If a MAC scheme is secure, the probability is negligible that
 can forge a valid (,) with .

 However, it may be possible for to forge a d valid tag
 fo

ifferent

Strong MAC security

A m t m Q

A t t

∉

′ ≠

•

•
r some message , where is the tag returned by the oracle on .

 If no adversary is able to do so, the MAC scheme is .

 To formally define strong security, mo

strongly sec

dify the experiment

ure

a

m Q t m

•

•

∈

{ }

s follows:

 Let (,) : , is the tag returned by the oracle on .
 succeeds if an only if it outputs a valid pair (,) .

 If is deterministic, then "secure" "strongly se

Q m t m Q t m
A m t Q

MAC•

′ = ∈

′∉

⇔





cure".
8

 Let be a pseudorandom function.

 We will use to construct secure MAC schemes in several steps.
 Secure fixed-leng MAC schemes for messages of l

t enh gt

h

Constructing secure MAC schemes

F
n

F•

•


fixed-length ()
arbitrary-len

 Secure MAC schemes for messages of length
 Secure MAC schemes for messages

 For simplicity, assume message length is a multiple of .
 (We can a

lwa

g

ys

th

n

n l n⋅

•





 do padding to make this assumption true.)

9

 Let be a pseudorandom function.

 Fixed-length MAC scheme for messages of length :
 Key generation: On input 1 , {0,1} .
 Tag gene

 ration: On inpu

Secure MAC schemes for {0,1}

n n

n

u

F

n
k

M
•

←

•

=



 t {0,1} and message {0,1} ,
 output the tag : ().

1 if ()
 Verification: On input (,), (,) :

0 othe

rwis

Theorem: Such a MAC scheme is secure.

e

n n

k

k
k

k m
t F m

F m t
m t Vrfy m t

∈

•

∈
=

=
= 




10

 Let be a pseudorandom function.

 Basic CBC-MAC works as follows:
 Key generation: {0,1} .
 Tag generation: For key {0,1} an

 d message {0,1} ,
 par

Basic CBC-MAC

n
u

n n q

F

k
k m ⋅

←

∈ ∈
−

•

•





1

0 1

se as (, ,) // blocks //

 apply CBC to with 0 , i.e., let
 : 0 and : () for 1
 output as the tag

 Verification: can o

q

n

n
i k i i

q

m m m m q

m IV
t t F m t i q
t

−

=

− =

= = ⊕ ≤ ≤
−





Theorem: For any length function , basic CBC-MAC is secure
 for messages of l

nical

ength
fixe

(.
d
)

l
n l n⋅

•

11

0

1 2 3 4

 It is important that () is fixed, or the scheme would be insecure.

 Also, the scheme insecure variabwould be if message length is .
 Suppose

le
 : ()

and : ().

Remarks

k k

t IV

t Mac m m m t Mac m
•

′= =

•

  

4

2 3 4

4 4

1

 Let be such that .
 Then () .k

m t m m
Mac m mm m t
′ ′⊕ =

′ ′=


   

12

0nIV =

A FIPS and ISO standard.

 There are several variants of CBC-

One variant of CBC-MAC:

MAC.

 Prepend the message with its length (as an -bit string)
 an

CBC-MAC for arbitrary-length messages

m m n

•

•

•

d then compute basic CBC-MAC on the result.

 Remarks:
 There is a limitation on .

 It would be insecure if is appended to the end of .

m

m m

•





13

14

()2 1

1 2

1

 Generate two keys , {0,1} .

 To authenticate a message , let the tag be

 : basic-CBC-MAC () .

 One may use only one key and generate

Another variant of CBC-MAC
n

u

k k

k k

m

t F m

k k

• ←

•

=

• 2

1 2

, from :

 : (1) and : (2)k k

k k

k F k F= =

15

 CBC-MAC is secure if is a pseudorandom funTheo

ction.

In practice, block ciphers (such as DES

rem

, AES) are used.

:

Security of CBC-MAC (for arbitrary length)

F

•

16

Authenticated Encryption

To ensure both secrecy and integrity

17

,

 Run (1) to obtain a key .
 The adversary is given 1 and access to oracle (),
 and .

Experiment Enc-Forge () :

outputs a ciphertext
 Let

Unforgeable encryption

A

n

n
k

n

c

Gen k
A Enc

Π•

⋅





 . Let be the set of all messages that
 has asked the oracle for encryption.
 The output of the experiment is 1 (succeeds) if and only if
 is a valid m

:

essage () an

()k Q A

A

c c

m

m

m

e

M

D

∈

=



,

Definition: unforgeab

d .

 An encryption scheme (, ,) is

 if for every , Pr Enc-Forge ()

l

1 ().

e

A

m Q

Gen Enc Dec

A n negl nΠ

∉

Π =

= ≤  

•

18

 A symmetric-key encryption scheme is an
 encryption scheme if it is CCA-secure and

a

ut
un

hent
forgeable.

 We will construct an

icateDefiniti

 authenticated e

don:

ncry

Authenticated encryption scheme
•

• ption scheme from a
 CPA-secure encryption scheme and a strongly secure MAC scheme.

 Three natural ways:
 Encrypt and authenticate (insecure)
 Authenticate then encrypt (ins

e cur

e)

•




 Encrypt then authenticate (secure)

 In the following slides, let be a message, an encryption key,
 and a MAC key.

E

M

m k
k

•

19

 Sender: encrypt and authenticate independently. That is,
 the ciphertext is where

 (), ()

 Receiver: given ciphertext , , do

,

Encrypt and Authenticate

E Mk k

m

c Enc m t Mac m

c t

c t

•

← ←

•

 (), and then check if (,) 1.

 Security:
 Not necessarily EAV-secu

re, since might leak info about .

 If is deterministic (e.g., CBC-MAC), then the scheme

E Mk km Dec c Vrfy m t

t m
Mac

•

← =





not
 is

CPA- secure.

20

 Sender: authenticate first and then encrypt and the tag.
 Thus, the ciphertext is computed as:

 (), ()

 Receiver: given ciphert

Authenticate then Encrypt

M Ek k

m m

t Mac m c Enc m t

c
•

•

← ← 

ext , do

 () and then check if (,) 1.

 A potential attack:
 Suppose PKCS#5 padding is used. Suppose the receiver does:

 if the

 p

adding is incorrect then

E Mk k

c

m t Dec c Vrfy m t

•

← =





 return a "bad padding" error
 the tag is incorrect return a "bad mac" error.

The padding attack can be conducted to recover t
elsei

he en t i
f th

.
en

re m t 

21

 Sender: encrypt first and then authenticate the result. Thus,
 the ciphertext is where

 (), ()

 Receiver: on receiving , , i

,

f

Encrypt then Authenticate

E Mk k

m

c Enc m t Mac c

c

t

t V

c

•

← ←

•

(,) 1 then ().

 If the encryption scheme is and the MAC
 scheme is , then the encryption-then-au

CPA-secure
strongly secure

authe
thenticate

 cons

The

tru nticaction te

or

yields

an

em:

M Ek krfy c t m Dec c

•

= ←

 scheme.

 CPA-secure encryption + strongly secure MAC
 CCA-secure and unforgeabl

d e

e e

ncrypti

ncry

on

ption⇒
22

	Message Authentication Codes
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Authenticated Encryption
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

