Practical Constructions of Block Ciphers

Reading: K\&L Section 6.2 (skipping 6.2.6)

Practical constructions of block ciphers

- There are methods to construct pseudorandom functions/permutations from one-way functions.
- One-way functions \Rightarrow pseudorandom generators
\Rightarrow pseudorandom functions
\Rightarrow pseudorandom permutations
- Extremely slow
- In practice, block ciphers are constructed using
- Feistel networks (e.g., DES)
- Substitution-permutation networks (e.g., AES)
- Block ciphers: "approximate" pseudorandom permutations with some fixed key length and block length.

Constructing pseudorandom functions

- A pseudorandom function F can be constructed from a pseudorandom generator.
- Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be a pseudorandom generator.
- Write $G(s)=G_{0}(s) \| G_{1}(s)$.
- For all $k \in\{0,1\}^{n}$ and $r=b_{1} b_{2} b_{3} \ldots b_{n} \in\{0,1\}^{n}$, define

$$
F_{k}(r)=G_{b_{n}}\left(G_{b_{n-1}}\left(\cdots G_{b_{3}}\left(G_{b_{2}}\left(G_{b_{1}}(k)\right)\right)\right)\right) .
$$

The confusion-diffusion paradigm

- Introduced by Shannon. Suppose we want to design a 128-bit (keyed) random-looking permutation F.
- First, design an 8-bit (keyed) random-looking permutation f.
- To compute $F_{k}(x)$:
- Divide the input block x into sixteen 8 -bit blocks x_{1}, \ldots, x_{16}.
- Use the key k to specify 16 permutations $f_{k_{1}}, \ldots, f_{k_{16}}$. (I.e., derive a round key $\left\langle k_{1}, \ldots, k_{16}\right\rangle$ from the master key k.)
- Let $x^{\prime}=f_{k_{1}}\left(x_{1}\right)\|\cdots\| f_{k_{16}}\left(x_{16}\right) \quad$ (confusion/substitution).
- Permutate the 128 bits of x^{\prime}
(diffussion/permutation).
- Repeat the process several times (rounds).

Substitution-permutation networks

- An implementation of the confusion-diffusion paradigm.
- Harder to design a (keyed) random-looking permutation f.
- So, instead, design 16 (unkeyed) 8-bit permutations f_{1}, \ldots, f_{16}, called S-boxes and denoted by S_{1}, \ldots, S_{16}.
- To compute $F_{k}(x)$:
- Divide the input block x into 8 -bit blocks x_{1}, \ldots, x_{16}.
- Derive a round key $\left\langle k_{1}, \ldots, k_{16}\right\rangle$ from the master key k.
- Let $x^{\prime}=S_{1}\left(x_{1} \oplus k_{1}\right)\|\cdots\| S_{16}\left(x_{16} \oplus k_{16}\right)$ (key-mixing \& substitution).
- Permutate the 128 bits of $x^{\prime} \quad$ (permutation).
- Repeat the process several times (rounds), followed by a final key-mixing.

Substitution-permutation network

Key-mixing

Substitution

Permutation

> In practice, all rounds use the same set of boxes, say $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\right\}$.

Feistel Networks and

Data Encryption Standard (DES)

Feistel Network/Cipher

- Proposed by Feistel (in 1970s). Suppose we want to design an ℓ-bit (keyed) random-looking permutation F.
- First, design an $\ell / 2$-bit (keyed) random-looking function f, which is not necessarily invertible.
- To compute $F_{k}(x)$:
- Divide the input block x into two halves L and R.
- Derive a round key k_{i} (for round i) from master key k.
- Let $x^{\prime}=R \| L \oplus f_{k_{i}}(R)$.
- Repeat the process several times (rounds).
- (Typically there is a final swap of L and R.)

Round i

f is not invertible

The Feistel Network

 StructureNote: Read F as f.

Feistel Network/Cipher (Mathematical Description)

- Let L_{i} and R_{i} denote the output half-blocks of the i th round.
- So L_{i-1} and R_{i-1} are the input of the i th round.
- We have

$$
\begin{aligned}
L_{i} & :=R_{i-1} \\
R_{i} & :=L_{i-1} \oplus f_{k_{i}}\left(R_{i-1}\right)
\end{aligned}
$$

- The i th round can be viewed as a composite function $\mu \circ \phi_{i}$.

$$
\begin{aligned}
& \phi_{i}:(L, R) \rightarrow\left(L \oplus f_{k_{i}}(R), R\right) . \\
& \mu:(L, R) \rightarrow(R, L) .
\end{aligned}
$$

- Note that $\phi_{i}^{-1}=\phi_{i}$ and $\mu^{-1}=\mu$.
- Assume 16 rounds.
- A Feistel cipher with key k and input block x will output:

$$
y=F_{k}(x)=\mu \circ \mu \circ \phi_{16} \circ \cdots \circ \mu \circ \phi_{2} \circ \mu \circ \phi_{1}(x)
$$

- The inverse $F_{k}^{-1}(y)$ will be:

$$
\begin{aligned}
F_{k}^{-1}(y) & =\phi_{1}^{-1} \circ \mu^{-1} \circ \phi_{2}^{-1} \circ \cdots \circ \mu^{-1} \circ \phi_{16}^{-1} \circ \mu^{-1} \circ \mu^{-1}(y) \\
& =\mu \circ \mu \circ \phi_{1} \circ \mu \circ \phi_{2} \circ \cdots \circ \mu \circ \phi_{16}(y)
\end{aligned}
$$

- F_{k}^{-1} is the same as F_{k}, but uses the round keys in the reverse order.

DES: The Data Encryption Standard

- Once most widely used block cipher in the world.
- Adopted by NIST in 1977.
- Based on the Feistel cipher structure with 16 rounds of processing.
- Block $=64$ bits
- Key = 56 bits
- What is specific to DES is the design of the f function and how the round keys are derived from the main key.

Design Principles of DES

- To achieve high degree of confusion and diffusion.
- Confusion: making the relationship between the encryption key and the ciphertext, as well as that between the plaintext and the ciphertext, as complex as possible.
- Diffusion: making each plaintext bit affect as many ciphertext bits as possible.

Round Key Generation

- Main key: 64 bits, but only 56 bits are used.
- 16 round keys (48 bits each) are generated from the main key by a sequence of permutations.
- Select and permute 56-bits using Permuted Choice One (PC1). Then divide them into two $\mathbf{2 8}$-bit halves.
- At each round:
- Rotate each half separately by either 1 or 2 bits according to a rotation schedule.
- Select 24-bits from each half \& permute them (48 bits) by PC2.
- This forms a round key.

Permuted Choice One (PC1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

DES Round Structure

- $L \& R$ each has 32 bits.
- As in any Feistel cipher:

$$
\begin{aligned}
L_{i} & :=R_{i-1} \\
R_{i} & :=L_{i-1} \oplus f_{k_{i}}\left(R_{i-1}\right)
\end{aligned}
$$

- f takes 32-bit R and 48-bit round key k_{i} :
- expands R to 48-bits using expansion perm E
- adds to the round key using XOR
- shrinks to 32 -bits using $8 S$-boxes
- finally permutes using 32-bit perm P

The DES f function

The E Expansion Permutation

4	1	2	3	4	5
8	5	6	7	8	9
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

The S-Boxes

- Eight S-boxes each map 6 to 4 bits
- Each S-box is a 4×16 table
- each row is a permutation of 0-15
- outer bits $1 \& 6$ of input are used to select one of the four rows/permutations
- inner 4 bits of input are used to select a column
- All the eight boxes are different.

Box S_{1}

- For example, $\mathrm{S}_{1}(101010)=6=0110$.

P-Permutation

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Avalanche Effect

- Avalanche effect: a key desirable property of any encryption algorithm:
- A small change in the plaintext or in the key results in a significant change in the ciphertext.
- (an evidence of high degree of diffusion and confusion)
- DES exhibits a strong avalanche effect
- Changing 1 bit in the plaintext affects 34 bits in the ciphertext on average.
- 1-bit change in the key affects 35 bits in the ciphertext on average.

Attacks on DES

- Brute-force key search
- Needs only two plaintext-ciphertext samples
- Trying 1 key per microsecond would take 1000+ years on average, due to the large key space size, $2^{56} \approx 7.2 \times 10^{16}$.
- Differential cryptanalysis
- Possible to find a key with 2^{47} plaintext-ciphertext samples
- Known-plaintext attack
- Linear cryptanalysis:
- Possible to find a key with 2^{43} plaintext-ciphertext samples
- Known-plaintext attack

Attacks on DES

- DES Cracker:
- A DES key search machine
- containing 1536 chips
- could search 88 billion keys per second
- In 1998, won RSA Laboratory's DES Challenge II-2 by successfully finding a DES key in 56 hours.
- Cost: \$250,000
- The vulnerability of DES is due to its short key length.
- Remedy: 3DES

Multiple Encryption with DES

- In 2001, NIST published the Advanced Encryption Standard (AES) to replace DES.
- But users in commerce and finance are not ready to give up on DES.
- As a temporary solution to DES's security problem, one may encrypt a message (with DES) multiple times using multiple keys:
- 2DES is not much securer than the regular DES
- So, 3DES with either 2 or 3 keys is used

2DES

- Use two DES keys, say k_{1}, k_{2}.
- Encryption: $c:=E n c_{k_{2}}\left(E n c_{k_{1}}(m)\right)$
- Key length: $56 \times 2=112$ bits
- Would this thwart brute-force attacks?

Meet-in-the-Middle Attack on 2DES

$$
m \rightarrow \operatorname{Enc}_{k_{1}} \rightarrow \operatorname{Enc}_{k_{2}} \rightarrow c
$$

- Given a known pair (m, c), attack as follows:
- Encrypt m with all 2^{56} possible keys for k_{1}.
- Decrypt c with all 2^{56} possible keys for k_{2}.
- Find two keys $\tilde{k}_{1}, \tilde{k}_{2}$ such that $\operatorname{Enc}_{\tilde{k}_{1}}(m)=\operatorname{Dec}_{\tilde{k}_{2}}(c)$.
- Try $\tilde{k}_{1}, \tilde{k}_{2}$ on another pair $\left(m^{\prime}, c^{\prime}\right): \operatorname{Is~}_{\operatorname{Enc}}^{\tilde{k}_{1}}\left(m^{\prime}\right)=\operatorname{Dec}_{\tilde{k}_{2}}\left(c^{\prime}\right)$?
- If works, $\left(\tilde{k}_{1}, \tilde{k}_{2}\right)=\left(k_{1}, k_{2}\right)$ with high probability.
- Takes $\Theta\left(2^{56}\right)$ steps, not much more than attacking 1-DES.
- It is a known-plaintext attack.

3DES with 2 keys

- A straightforward implementation would be:

$$
c:=\operatorname{Enc}_{k_{1}}\left(\operatorname{Enc}_{k_{2}}\left(\operatorname{Enc}_{k_{1}}(m)\right)\right)
$$

- In practice: $c:=\operatorname{Enc}_{k_{1}}\left(\operatorname{Dec}_{k_{2}}\left(\operatorname{Enc}_{k_{1}}(m)\right)\right)$
- Also referred to as EDE encryption
- Reason : if $k_{1}=k_{2}$, then 3DES $=1 \mathrm{DES}$.

Thus, a 3DES software can be used as a single-DES.

- Standardized in ANSI X9.17 \& ISO 8732.
- No practical attacks are known.
- Not recommended: key size 112 bits is shorter than the current minimum recommendation of 128 bits.

3DES with 3 keys

- Encryption: $c:=\operatorname{Enc}_{k_{3}}\left(\operatorname{Dec}_{k_{2}}\left(\operatorname{Enc}_{k_{1}}(m)\right)\right)$.
- If $k_{1}=k_{3}$, it becomes 3DES with 2 keys.
- If $k_{1}=k_{2}=k_{3}$, it becomes the regular DES.
- So, it is backward compatible with both 3DES with 2 keys and the regular DES.
- Some internet applications adopt 3DES with three keys, e.g. PGP and S / MIME.

AES: Advanced Encryption Standard

Finite field: The mathematics used in AES.

AES: Advanced Encryption Standard

- In1997, NIST began the process of choosing a replacement for DES and called it the Advanced Encryption Standard.
- Requirements: block length of 128 bits, key lengths of 128, 192, and 256 bits.
- In 2000, Rijndael cipher (by Rijmen and Daemen) was selected.
- An iterated cipher, with 10,12 , or 14 rounds.
- Rijndael allows various block lengths.
- AES allows only one block size: 128 bits.

> In practice, all rounds use the same set of boxes, say $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\right\}$.

Structure of Rijndael

- N_{b} : block size (number of words). For AES, $N_{b}=4$.
- N_{k} : key length (number of words).
- N_{r} : number of rounds, depending on N_{b}, N_{k}.
- Assume: $N_{b}=4, N_{k}=4, N_{r}=10$.
- state: a variable of 4 words, holding the data block, viewed as a 4×4 matrix of bytes; each column is a word.
- Key schedule: $N_{r}+1$ round keys $k e y_{0}$, key $_{1}, \ldots$, key $_{10}$ are computed from the main key k.

Rijndael algorithm (input: plaintext m, key k)
1 state $\leftarrow m$
2 AddKey(state, key $_{0}$)
3 for $i \leftarrow 1$ to $N_{r}-1$ do
4 SubBytes(state)
ShiftRows(state)
6 Mixcolumns(state)
$7 \quad \operatorname{AddKey}\left(\right.$ state, Key $\left._{i}\right)$
8 SubBytes(state)
9 ShiftRows(state)
$10 \operatorname{AddKey}\left(\right.$ state key $\left._{N_{r}}\right)$
11 return(state)

$\operatorname{AddKey}\left(\right.$ state, key $\left._{i}\right)$

state \leftarrow state \oplus key $_{i}$

SubBytes(state)

- Each byte z in state is substituted with another byte according to a table.

ShiftRows(state)

- Left-shift row i circularly by i bytes, $0 \leq i \leq 3$.

$$
\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right) \rightarrow\left(\begin{array}{llll}
a & b & c & d \\
f & g & h & e \\
k & l & i & j \\
p & m & n & o
\end{array}\right)
$$

MixColumns(state)

- Operates on each column of the state matrix.
- View each column $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ as a polynomial with coefficients in $\mathrm{GF}\left(2^{8}\right)$:

$$
a(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

- A fixed polynomial: $c(x)=03 x^{3}+01 x^{2}+01 x+02$.
- The MixColumns operation maps each column

$$
a(x) \mapsto a(x) \cdot c(x) \bmod \left(x^{4}+1\right)
$$

Rijndael Decryption

- Each step of Rijndael encryption is invertible.

Rijndael key schedule

- Round keys are derived from the main key

A Rijndael Animation by Enrique Zabala

