
Practical Constructions of Block Ciphers

Reading:  K&L Section 6.2 (skipping 6.2.6)
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  There are methods to construct pseudorandom

    functions/permutations from one-way functions.

  One-way func  tions pseudorandom generators

                

  

Practical constructions of block ciphers
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                     pseudorandom functions

                                     pseudorandom permutations

  Extremely slow

  In practice, block ciphers are constructe
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  Substitution-permutation networks (e.g., AES)
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  A pseudorandom function  can be constructed

    from a pseudorandom generator.

  Let :  {0,1} {0,1}  be a pseudorandom generator.
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  Introduced by .  Suppose we want to design a 

    (keyed) random-looking permutation .

  First, design an  (keyed) random-looking permutatio

Shannon 128-bit

8-b  it n .
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 To compute ( ) :  

      Divide the input block  into sixteen 8-bit blocks , , .

      Use the key  to specify 16 permutations , , .  

        (I.e., derive a round key , ,  from th
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  An implementation of the confusion-diffusion paradigm. 

  Harder to design a ( ) random-looking permutation .

  So, in
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stead, design 16 ( )

ed

unke  8-bit permutatyed
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    called S-boxes and denoted by , , .

  To compute ( ): 

      Divide the input block  into 8-bit blocks , , .

      Derive a round key , ,  from the master key .
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Substitution-permutation network

Key-mixing

Substitution

Permutation
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Sub-key mixing

In practice, all 

rounds use the 

same set of boxes, 

say {S1,S2,S3,S4}.



Feistel Networks and 

Data Encryption Standard (DES)
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  Proposed by Feistel (in 1970s).  Suppose we want to design

    an -bit (keyed) random-looking  .

  First, design an 2-bit (
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ke ) ryed function
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  Let  and  denote the output half-blocks of the th round.

  So  and  are the input of the th round.

  We have

                      

Feistel Network/Cipher (Mathematical Description)
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  Assume 16 rounds.

  A Feistel cipher with key  and input block  will output:
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  The inverse ( ) will be:
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DES: The Data Encryption Standard

• Once most widely used block cipher in the world. 

• Adopted by NIST in 1977.

• Based on the Feistel cipher structure with 16 rounds of 

processing.

• Block = 64 bits

• Key = 56 bits

• What is specific to DES is the design of the  f function 

and how the round keys are derived from the main key.
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Design Principles of DES

• To achieve high degree of confusion and diffusion.

• Confusion: making the relationship between the encryption 

key and the ciphertext, as well as that between the plaintext 

and the ciphertext, as complex as possible.

• Diffusion: making each plaintext bit affect as many 

ciphertext bits as possible.

1



DES Encryption 

Overview



Round Key Generation

• Main key: 64 bits, but only 56 bits are used.

• 16 round keys (48 bits each) are generated from the main key by 

a sequence of permutations. 

• Select and permute 56-bits using Permuted Choice One (PC1).   

Then divide them into two 28-bit halves.

• At each round:

– Rotate each half separately by either 1 or 2 bits according to 

a rotation schedule.

– Select 24-bits from each half & permute them (48 bits) by 

PC2.  

– This forms a round key.



Permuted Choice One (PC1)
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57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4
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&  each has 32 bits.

As in any Feistel cipher:

 takes 32-bit  and 48-bit round key :

expands  to 48-bits u

  

  

        :   

        :

sing expans

 ( )

  

      

DES Round Structure

i

i i

i i k i

i

L R

R L f

k

R

L R

f R

R



 





•

•



•

                             

      

ion perm 

adds to the round key using XOR
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The DES  f function



32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

The E Expansion Permutation



The S-Boxes

• Eight S-boxes each map 6 to 4 bits 

• Each S-box is a 4 x 16 table

– each row is a permutation of 0-15

– outer bits 1 & 6 of input are used to select one of the 
four rows/permutations 

– inner 4 bits of input are used to select a column

• All the eight boxes are different.
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S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 6 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Box S1

• For example, S1(101010) = 6 = 0110.

0     1      2      3      4     5      6     7      8       9    10    11   12    13    14    15

0

1

2

3
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P-Permutation



Avalanche Effect 

• Avalanche effect:  a key desirable property of any encryption 

algorithm:

– A small change in the plaintext or in the key results in a 

significant change in the ciphertext.

– (an evidence of high degree of diffusion and confusion)

• DES exhibits a strong avalanche effect

– Changing 1 bit in the plaintext affects 34 bits in the 

ciphertext on average.

– 1-bit change in the key affects 35 bits in the ciphertext on 

average.
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Attacks on DES

• Brute-force key search

– Needs only two plaintext-ciphertext samples 

– Trying 1 key per microsecond would take 1000+ years on 

average, due to the large key space size, 256 ≈ 7.2×1016.

• Differential cryptanalysis

– Possible to find a key with 247 plaintext-ciphertext samples

– Known-plaintext attack

• Linear cryptanalysis: 

– Possible to find a key with 243 plaintext-ciphertext samples

– Known-plaintext attack
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Attacks on DES

• DES Cracker:

– A DES key search machine 

– containing 1536 chips

– could search 88 billion keys per second 

– In 1998, won RSA Laboratory’s DES Challenge II-2 by 

successfully finding a DES key in 56 hours.

– Cost: $250,000

• The vulnerability of DES is due to its short key length.  

• Remedy: 3DES



Multiple Encryption with DES

• In 2001, NIST published the Advanced Encryption Standard 

(AES) to replace DES.

• But users in commerce and finance are not ready to give up on 

DES.

• As a temporary solution to DES’s security problem, one may 

encrypt a message (with DES) multiple times using multiple 

keys:

– 2DES is not much securer than the regular DES

– So, 3DES with either 2 or 3 keys is used

29
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2 1

1 2  Use two DES keys, say ,  .  

  Encryption:    : (

Key length: 56  2  112 bits

Would this thwart brute-force attack
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Enc Enc

Given a known pair ,  , attack as follows:

     Encrypt  with all 2  possible keys for .

     Decrypt  with all 2
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1 2 1

1 2 1

1

  A straightforward implementation would be :   

                 :  ( )

  In practice :   :  ( )

    Also referred to as EDE encryption

  Reason :

 

 if 

3DES with 2 keys

k k k

k k k

c Enc Enc Enc m

c Enc Dec Enc m

k





•

•

•  2 ,  then 3DES 1DES. 

    Thus,  a 3DES software can be used as a single-DES.

  Standardized in ANSI X9.17 &  ISO 8732.

  No practical attacks are known.

  Not recommended: key size 112 bits is shorter th

k

•

•

•



an the current

    minimum recommendation of 128 bits.
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3 2 1

1 3

1 2 3

  Encryption:   :  ( ) .

  If ,  it becomes 3DES with 2 keys.

  If ,  it becomes the regular DES.

  So,  it is backward compatible with both 3DES with 2 keys

 

3DES with 3 keys

k k kc Enc Dec Enc m

k k

k k k

•

 •

•

•



   and the regular DES.

  Some internet applications adopt 3DES with three keys,

    e.g. PGP and S / MIME.

•



AES: Advanced Encryption Standard

Finite field: The mathematics used in AES.



35

AES: Advanced Encryption Standard

• In1997, NIST began the process of choosing a replacement 

for DES and called it the Advanced Encryption Standard.

• Requirements: block length of 128 bits, key lengths of 128, 

192, and 256 bits.

• In 2000, Rijndael cipher (by Rijmen and Daemen) was 

selected.

• An iterated cipher, with 10, 12, or 14 rounds. 

• Rijndael allows various block lengths.   

• AES allows only one block size: 128 bits.
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Sub-key mixing

In practice, all 

rounds use the 

same set of boxes, 

say {S1,S2,S3,S4}.
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  :  block size (number of words).  For AES, 4.

  :  key length (number of words). 

  : number of rounds, depending on , .

  Assume:   4,   4,   10.

:   

Structure of Rijndael
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0 1 10

a variable of 4 words, holding the data block, 

    viewed as a  each column is a word.

  Key schedule:  1 round keys , , , 

    are computed from the main

4 4 matrix of bytes

 key .

;

 

rN key key key

k
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0

input: plaintext ,  key 

  1    

  2    AddKey( , )

  3    for 1 to 1 do

  4          SubBytes( )

  5          ShiftRows( )

  6          Mixcolumns( )

  7  

Rijndael algorithm 

r

m k

state m

state key

i N

state

state

state



 

        AddKey( , )

  8    SubBytes( )

  9    ShiftRows( )

 10   AddKey( , )

 11    return( )
r

i

N

state key

state

state

state key

state
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AddKey( , )

i

i

state state key

state key
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   Each byte  in  is substituted with another byte

    according to a table.

SubBytes( )

staz te

state
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  Left-shift row  circularly by  bytes, 0 3.

   

ShiftRows( )

i i i

a b c d a b c d

e f g h f g h e

i j k l k l i j

m n o p p m n o

state
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0 1 2 3

8

3 2

3 2 1 0

  Operates on each column of the  matrix.

  View each column ( ,  ,  ,  ) as a 

    polynomial with coefficients in GF(2 ) :

             ( ) +  

  A fixed pol

MixColumns( )

a

state

a a a a

a x a x a x a x a

state



  

3 2

4

ynomial:  ( ) 03 01 +01 02.

  The MixColumns operation maps each column

            ( ) ( ) ( ) mod  ( 1)a x a

c x x x x

x c x x
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  Each step of Rijndael encryption is invertible.

Rijndael Decryption
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  Round keys are derived from the main key

Rijndael key schedule



A Rijndael Animation by Enrique Zabala
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Rijndael_Anim_Enrique Zabala.exe

