
1

Symmetric-Key Encryption

CSE 5351: Introduction to Cryptography

Reading assignment:

• Chapter 3

• Read sections 3.1-3.2 first (skipping 3.2.2)

2

0

0

 A nonegative function : is said to be

 if for every positive polynomial (), there is an integer

 such that

1

negligible

 () for all (i

.
()

Negligible functions

f

P n

n

f n n n
P n









log

e., for sufficiently large).

 Examples: 2 , 2 , are negligible functions.

 Negligible functions approach zero faster than the reciprocal of

 polynomial.

 We wri

every

negl()te to d

n n n

n

n

n

  



 enote an unspecified negligible function.

3

1

1 2

2

negl (

 If negl () and negl () are negligible functio

) ne

ns, then

 is negligible.

 If negl() is a negligible function and () a polynomial, then

gl ()

Properties of negligible functions

n n

n n

n p n





100 log

 is negligible.

 Examples

() n

: 2 2 and are negligible

egl

.

()

n n nn

p n n

n  



 

4

 In perfect indistinguishability (perfect secrecy),

 the adversary has

 unlimited computing power,

 success rate

 also, message

1 2;

Relaxing the security requirement





 length .

 Now we relax the notion of perfect indistinguishability by

 limiting adversaries to having computing power,

 allowing the success rate to be

is hidden

poly()

1 2 negl(),

 n

n

n 



 messageot hidin leng gth.

5

 The in the previous slide is called a

which indicates the

 We will associate an encryption scheme with a

 secureity parameter , an

security

 parameter, key len

d w

g .

u

th

o

Security Parameter

n

n







ld like to be secure

 in the sense that any adversary with computing

 power can break with at most probability

(

(.

)

)

poly n

negl n





6

 Probabilistic polynomial-time algorithms

 Polynomial-time : the running time is polynomial in .

 is the number of bit

input le

s of the

ngth

Input le input.

 What is the len

ngth

gth of

PPT Algorithms







 in binary, and what is the length of 1 ?

 What is the difference between these two statements:

 () is a PPT algorithm.

 (1) is a PPT algorithm.

n

n

n

A n

A



7

 A tuple of polynomial-time algorithms: (, ,)

 Key generation algorithm : On input 1 , outputs a

 key {0,1} . We

write

(

Private-key encryption scheme w. security parameter

n

n

Gen Enc Dec

Gen

k k Gen

n

 

 





*

1). (: security parameter.)

 Encryption algorithm : On input a key and a message

 {0,1} , outputs a ciphertext . We write ().

 Decryption algorithm : On input a key an

 d

n

k

n

Enc k

m c c Enc m

Dec k









 

*

a ciphertext ,

 outputs a message or an error symbol .

 We write : ().

 Correctness requirement: for every (1) and {0,1} ,

 () .

 , are prob

k

n

k k

c

Dec m

m Dec c

k Gen m

Dec Enc m m

Gen Enc





 







abilistic. , deterministic. Dec

8

() If message space {0,1} , then (, ,) is

 said to be a private-key encryption scheme for

 messages of length ().

 If (1) simply outputs {0,1} , we omit

fixed-l t

h

eng

n

n n

u

M Gen Enc Dec

n

Gen k Ge

  

  and simply

 denote the scheme by (,). This is almost always the case.

n

Enc Dec

9

eav

,

PPT singl Adversary: eavesdropper with a ciphertext.

 (, ,) : an encryption scheme with security parameter .

 Imagine a

game pla

(

)

e

Ciphertext Indistinguishability Experiment PrivKA

Gen Enc Dec n

n







0 1

0 1

yed by Bob and an adversary (Eve):

 Eve, given input 1 , outputs a pair of messages ,

 with (i.e., .

 Bob chooses a

having the sa

key (1) and a bit

me le

{0,1};

ngth)

n

n

u

A

m m

m m

k Gen b



 

0 1

eav

,

 computes (); and gives to Eve.

 Eve outputs a bit , trying to tell whether is an

 encryption of or .

 The Poutput, of the experirivK (),

ment

 is 1 i ff

k

A

bc E m c

b c

m m

bn







 (i.e., Eve succeeds.)

b

10

 A private-key encryption schem

 indistinguishab

e has

 (or is

) if for

le encryptions against an eavesdropper

 E

Defini

AV-secure

tion:

 all p

o

r

Ciphertext Indistinguishability against an eavesdropper



eav

,

babilistic polynomial-time adversaries ,

 there is a negligible function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the random

A

A

negl n n

n n
    

 0 1eav

,

0 1

ness used by ,

 the randomness used by Bob to choose the key and the bit ,

 as well as the randomness used by .

1 , , , () :
 Pr PrivK () 1 Pr

{0,1}, (1), ,

n

k b

A
n

u

A

b

Enc

A m m Enc m b
n

b k Gen m m A



   




  (1)n

 
 
  

11

 

eav

,

eav

,

 For 0 or 1 (fixed), let PrivK (,) denote the previous

 experiment with the fixed used.

 Let output PrivK (,) denote the adversary's output.

 Pr o

utpu

An equivalent formulation

A

A

b b

n

b

b

n







 
 0 1eav

,

0 1

1 , , , () 1:
t PrivK (,) 1 Pr

(1), , (1)

 A private-key encryption scheme i EAV-secures

 if and

The

only if for all PPT adversaries , there is a ne

orem:

gli

n

k

A

b

n n

mA m m Enc
n

k Gen m m A

A

b

 
     

 



  

   eav eav

, ,

gible

 function () such that

 Pr output PrivK (,) 1 Pr output PrivK (,) 1

 ne

0

()

1

gl .

A A

negl n

n n

n

 
     
   



12

   0 1 0 1

0 1

0 1

0 1

 That is,

1 , , , () 1: 1 , , , () 1:
 Pr Pr

(1), , (

1) (1), , (1)

 ()

n n

k k

n n n n

A m m Enc A m m Enc

k Gen m m A k Gen m m A

negl n

m m    
   

      





   

13

 Let denote the th bit of .

 If an encryption scheme is EAV-secure, then from a ciphertext

 (), it is infeasible for the adversary t

o

Adversaries cannot learn any bit of the plaintext

i

k

m i m

c Enc m





 

 

()

 recover .

 If a fixed-length private-key encryption scheme with

 {0,1} is EAV-secure, then for all PPT adversaries and

 any 1, , () , it holds:

 Pr

 Theorem:

1 , () : {0,1

}

i

n

n i n

k u

m

M A

i n

A Enc m m k





 



() 1
, {0,1} negl().

2

n

um n   
 

14

 Secure: EAV-secure, CPA-secure, or CCA-secure.

 Secure private-key encryption schemes may be constructed from:

 Pseudorandom generat

ors

 Pseudorandom functions

Secure Encryption Schemes





 Pseudorandom permutati ons.

Pseudorandom Generators and

Stream Ciphers

Encryption schemes using pseudorandom

generators

K&L: Section 3.3

15

16

 Vernam's one-time pad scheme is perfectly secure against

 single-ciphertext eavesdropper.

 Drawback: it requires a random key as long as the message.

 Solution: use a short key as

Motivation





 seed to generate a "pseudorandom"

 key that is as long as needed.

 This is the basic idea of stream ciphers.

17

 The term "stream cipher" may refer to the entire encryption scheme

 or just the pseudorandom generator.

Stream ciphers



18

 Informally, a pseudorandom generator is an algorithm that given

 a () string , outputs a " "

 (i.e.,pseudorandom) string l

short truly random ra

onge

nd

r

om-like

What is a pseudorandom generator?

G

s



than .

 Informally, a string is " " if it is to tell

 whether or not is generated by a generator.

 Loosely speaking, two sets ,

r

{0,1} are said to be

andom-like hard

truly-ra

polynomia

ndom

n

n n

s

r

r

A B 





 

 

 if for every polynomial distinguisher ,

lly

indistinguishable

Pr () 1:

Pr negl() 1 ():

|

|
u n

nu

D r r

D r

D

A

nr B

 

  

19

   

   

 In the above, we were actually talking about the indistinguishability

 between two ensembles (sequences) of sets: and .

 Two ensembles of setDefinit sion:

pol

 and are

n nn n

n nn n

A B

A B

 

 





 

 

 if for every polynomial-time

 distinguisher , it holds that

 Pr () 1:

 Pr () 1: negl()

ynomially ind

istinguishable

|

|

u n

u n

D

D r r A

D r r B n

 

 



 

 

 100

1

Which of the following are polynomially indistinguishable?

 {0,1} , {0,1} 0

 {0,1} , {0,1} : 2 as a binary integer

 {0,1} ,

 0 {0,1}

n n n

n n

n n

n n

n n

n n

A B

A B s s

A B 

  

   

 

20

 

     

 

Pr Pr () 1

1

{0,1} and {0,1} 0

are polynomially indistinguishable

 Pr () 1
2

1

.

Pr

()

Pr ()
2

1:

0

n

n

n

A

A

n n n

n

r

n
r

u

n

n

n

r D r

D r

D

A

A B

D r r






  

  

 

 





 

     

 

   

1
1 Pr () 1

2

Pr Pr () 1

1
 Pr () 1

2 1

Pr () 1:

Pr ()P negr () 1: 1 l) (:| |

n

n

n

n
r

r

n
r

B

n

B

uu

B

n

u

nD r r

D r

r DD r r

D r r

D

B

A B

r

r

n







    

 



 




    







21

 Let () be a polynomial such that () for all 0.

 Let be a deterministic polynomial-time algorithm that, for any

 input string {0,1} , outputs a st

Definition of pseudorandom generator

n

n n n

G

s

  







()ring () {0,1} .

 is said to be a with ()

 if for every polynomial-time distinguisher ,

pseudorandom generator expansion

 Pr (()) 1: {0,1

}

facto

r

|

n

n

u

G s

G

D

D G s s





   

   

   

()

()

 Pr () 1: {0,1} negl()

 That is, the two ensembles and , are polynomially

 indistinguishable, where () : {0,1} and 0,1 .

 |n

u

n nn N n N

nn

n n

D r r n

A B

A G s s B

 

     

  



22

1 1

1 11

 Let () () for {0,1} .

 Expansion facto

not

r () 1.

 is a pseudorandom generator:

1 if
 For {0,1} , let ()

0

Example: pseudorandom generainsecure tor

n

n n

n nn

G s s s s s s s

l n n

G

r r r
r D r



    

 

  







 

1

otherwise

 Pr (()) 1: {0,1} 1

 Pr () 1: {0,1} 1 2

 Difference between the two probabilities is not negligible.

n

u

n

u

D G s s

D r r 





    

    

23

 A string is said to be a if it is generated

 by a true random generator (i.e., {0,1} , where).

 A string is said to b

random string

pseudorandom stringe a if it is generated

Remarks

u

r

r r

r









()

 by a pseudorandom generator.

 What if the distinguisher has unlimited (or exponential) time?

1 if () for some {0,1}
 Given {0,1} , let ()

0 otherwise

 Pr (()) 1: {0

n

n

u

D

r G s s
r D r

D G s s

  
  









() () ()

,1} 1

 Pr () 1: {0,1} 2 2 1 2

 Difference between the two probabilities is not negligibl .e

n

n n n n n

uD r r 

   

     

24

 If one-way functions exist, then pseudorandom generators

 exist.

 That is, pseudorandom generators can be constructed from

 one-way functions.

 Chap

Existence of pseudorandom generators





 ter 7 of the K&L book shows how to construct pseudorandom

 generators from one-way permutations.

 True pseudorandom generators are slow for applications.

 In practice, algorithms such as RC4 are



 used.

25

 Let :{0,1} {0,1} be a one-way function.

 Let hard-:{0,1} {0,1} be a of .

 A boolean function defined on the do

co

main of

re pred

e

.

icat

Existence of pseudorandom generators (basic idea)

n n

n

f

b f

f

 



0

0

0 1 2 () 1

 Easy to compute () from .

 But hard to compute () from ().

 Given seed , let .

 Starting from , apply repeatedly:

 Let () (

f f f f

l n

b x x

b x f x

x x x

x f

x x x x

G x b





  





        0 1 2 () 1), , , , .

 is a pseudorandom generator with expansion factor ().

l nx b x b x b x

G l n





26

2

 Let for two large primes , .

 Let () mod . //one-way function//

 Let () the least significant bit of

Blum-Blum-ShubExample: pseudorandom generator

n pq p q

f x x n

b x

 





      

0 1 2 () 1

0 1 2 () 1

 //hard-core predicate//

 Let () (), , , , .

 is a pseudorandom generator with expansion factor ().

f f f f

l n

l n

x

x x x x

G x b x b x b x b x

G l n





  

 



27

0

 Suppose 29 31 899.

 Suppose 100.

 Then we have the sequence

 100, 111, 634, 103, 720, 576, 45, 227, 286, 886, 169,

 692,

Blum-Blum-ShubExample: pseudorandom generator

n pq

x





   





 596, 111, 634, 103, 720,

 The generated bits are 01010011001001010

28

 From a pseudorandom generator with expansion factor (), we

 can easily construct an EAV-secure ()-bit encryption scheme.

 : a pseudorandom

Encryption schemes based on pseudorandom generators

n

n

G





 

   
()

 generator with expansion factor ().

 Key generation: on input 1 , outputs a key 0,1 .

 Encryption: on input a key 0,1 and a message 0,1 ,

 outputs the ciphertext

nn

u

n n

n

k

k m









   
()

 : ().

 Decryption: on input a key 0,1 and a ciphertext 0,1 ,

 outputs the : ().

 Denote this scheme by .

n n

c m G k

k c

m c G k



 

 









29

0 0

1

 The scheme constructed above is EAV-secure

 (i.e. has indistinguishable encryptions against eavesdroppers).

 If encrypting with a truely random

I

s

The

tri

ntu

orem.

ng

ion

:

it :

Security

c rm

m

r

c









 1

0 0

1 1

 perfectly indistinguishable

 If a pseudorandom string is us()

()

()

ed instead:

 polynomially indistinguishable

r

G s

G sc m

c m G s




 

  


  



30

P

0 1

 We will show:

Distinguishing between Breaking encryption scheme

 random strings and (distinguishing between

pseudorand

By

om strings () ciphertexts a

redu

nd)

 Not

n.

ctio

Proof sketch

r

G s c c









Pation. A B: A reduces to B in polynomial time.

 Roughly meaning that we can solve A using an algorithm for B as a

 subroutine. Hardness of A hardness of B.

 Example?









31

 
()

 Let be an arbitrary PPT adversary against encryption scheme .

 Construct a distinguisher :

 , given as input a string 0,1 , wants to determine

 whether is random or pseudor

l n

A

D

D w

w









 
()eav

, 0 1

andom.

 runs PrivK () to obtain a pair of messages , 0,1 .

 chooses {0,1}, sets : , gives to , and

 obtains from .

 outputs 1 if , and out

l n

A

u b

D n m m

D b c m w c A

b A

D b b

 

  



 puts 0 otherwise.

32

eav

,

0 1

1

,

 adversary
 against
 encryption
 scheme

Run PrivK

{0,1}

:

: ()

Distinguisher

A

u

b

n

m m

c

b

A
w

b

c m w

ans b bans

D















  


 

33

*

() eav

,

*

()

eav

,

 Pr () 1: {0,1} Pr PrivK 1

 where is Vernan's one-time pad.

 Pr () 1: : (), {0,1}

 Pr () 1: {0,1}

1

 Pr () 1

2

Pr PrivK 1

|

l n

u A

n

u

l n

A

u

D w w

D w w G s s

D w w

D w




          



     

 

  

  

 

eav

,

eav

,

: : (), {0,1} ()

 So, 1 2 Pr PrivK 1 ()

 Pr PrivK 1 1 2 ()

 is EAV-secu

(Why?)

re

|

| |

n

u

A

A

w G s s negl n

negl n

negl n





    

    

     

 



34

 Stream ciphers require a new key for each message.

 In practice, Alice and Bob wish to share a permanent key and

 use it to encrypt multiple messa

Encrypting multiple messages with a single key

k





ges. One possible strategy:

 For each message , generate a random string and use

 as a seed to the pseudorandom generator .

 Include in the ciph : () :ertext, i.e .

, k

m r

s k r

c Enc

G

mr



   

not necessarily EAV-

 Unfortunately, the resulting scheme is .

 It requires to be more than a pseudorandom

 It is

generat

probabilis

or for the

se

, ()

 sc

tic!

heme to be EA

cure

.

V-sec

r

G

m G k r



ure.

35

1 2

1 2

 At the beginning of a session, Alice and Bob agree on two keys

 and (called session keys).

 Alice and Bob each run () and () to get two (long enough)

Using stream ciphers in a session

k k

G k G k





 

    

1 2

1 2 3

1 2 3 11 2 3

2

 pseudorandom strings, say and .

 Alice encrypts her sequence of messeges , , , ... as

 , , , ... : , , ,

 Bob uses for encryption in a similar way.

PS PS

m m m

c c c m m m PS

PS











In practice, a stream cipher is designed to generate a random string

 of desired length bit/byte by bit/byte byte on demand.

36

 

 Most popular stream cipher

 Simple and fast

 Used in many standards

 Actually not a cipher, but a practical, approximate

 pseudorandom generato

•

•

•

•

. N tr o

The RC4 Stream Cipher (K&L: Section 6.1.4)

 Designed by Ron Rivest in 1987 for RSA Security,

 and kept as a trade secret until

 truely pseudorandom.

 leaked out in 1

•

994.

37

 Two vectors of :

 [0], [1], [2], , [255]

 [0], [1], [2], , [255]

 Input Key (seed) : variable length, 1 to 256 bytes

 Initialization:

 1. [] , for 0 255

byt

es

 2.

RC4

S S S S

T T T T

K

S i i i











  

 [0..255] , , ... (until filled up)

T K K

38

 Initial Permutation of :

 0

 for 0 to 255 do

 ([] []) mod 256

 Swap [], []

 Idea: swapping bytes dependentl

RC4: Initial Permutation

S

j

i

j j S i T i

S i S j







  

 y of the input key.

 After this step, the input key will not be used.

39

 Key stream generation:

 , 0

 while (true)

 (1) mod 256

 ([]) mod 256

 Swap [], []

RC4:Key StreamGeneration

i j

i i

j j S i

S i S j





 

 

 ([] []) mod 256

 output []

 Idea: systematically keep swapping and producing

 output bytes

t S i S j

S t

 



Security of RC4

• RC4 is not a truly pseudorandom generator.

• The key stream generated by RC4 is biased.

– The second byte is biased toward zero with high probability.

– The first few bytes are strongly non-random and leak

information about the input key.

• Defense: discard the initial n bytes of the keystream.

– Called “RC4-drop[n-bytes]”.

– Recommended values for n = 256, 768, or 3072 bytes.

• Efforts are under way (e.g. the eSTREAM project) to

develop more secure stream ciphers.

40

The Use of RC4 in WEP

• WEP is an RC4-based protocol for encrypting data transmitted

over an IEEE 802.11 wireless LAN.

• WEP requires each packet to be encrypted with a separate RC4

key.

• The RC4 key for each packet is a concatenation of a 40-bit or

104-bit long-term key and a random 24-bit R.

41

lRC4 key: Long-term key (40 or 104 bits) R (24)

lHeader R Message CRC

encrypted

802.11

Frame:

WEP is not secure

• Mainly because of its way of constructing the key

• Can be cracked in a minute

• http://eprint.iacr.org/2007/120.pdf

42

http://eprint.iacr.org/2007/120.pdf

Stronger Security Notions

K&L: Section 3.4

43

44

 EAV-security (against eavedroppers, ciphertext-only-attacks)

 one encryption

 multiple encryptions

 CPA-security (against chosen-plaintext attacks)

 one

Different levels of security





 encryption

 multiple encryptions

 CCA-security (against chosen-ciphertext attacks)

 one encryption

 multiple encryptions



45

mult

,

 Adversary: eavesdropper with multiple ciphertexts

 A game between Bob and an adversary :

 The adversary, given

lisinput 1 , sele c

()

ts two

Multiple-ciphertext indist. experiment PrivK

n

A

A

n





1 2 1 2

0 0 0 0 1 1 1 1

0 1

 (, , ...,) and (, , ...,)

 such that for all .

 Bob chooses a key (1) and a bit {0,1};

 computes () for all

ts of messages

t t

i i

n

u

i i

k b

M m m m M m m m

m m i

k Gen b

c Enc m

 



 



1 2

 , and gives the challenge

 ciphertext list (, , ...,) to the adversary.

 The adversary outputs a bit .

 The output of the experiment is 1 iff .

t

i

C c c c

b

b b







46

 A private-key encryption scheme

 indistinguishabl mu

D

l

ef

ti

init

plee en

has

if for a

io

cryptions against an eavesdropper

 ll PPT adversaries

n:

Multiple-ciphertext indist. against an eavesdropper

 

mult

,

 , there is a negligible function ()

 such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the randomness used by ,

 by Bob, by , an

A

A negl n

n

n n

A

Gen


    

0 1mult

,

0 1

d by .

(1 , , , ()) :
 Pr PrivK () 1 Pr

{0,1}, (1), , (1)

n

k b

A n n

u

Enc

A M M Enc M b
n

b k Gen M M A


 
     

 


 

47

 If the of an en

cryption scheme (Gen,Enc,Dec)

 is deterministic, then the scheme have indisting

Theorem:

cannot u

Deterministic encryption schemes

are not multiple-ciphertext indistinguishable

Enc  

0 1

1 2

ishable

 encryptions against an eavesdropper.

 Proof. Suppose is deterministic.

 Let (0 , 0) and (0 , 1). Let the challenge ciphertext

 list be

mult

(,).

 What c

i

a

ple

n n n n

Enc

M M

C c c

 





1 2 1 2n say if (or if)?

 For example, Vernam's one-time pad (for a fixed) is

 single-ciphertext indistinguishable, but not multiple-ciphertext

 indistinguis

hable.

A c c c c

n







48

1 1

 The adversary is capable of adaptively obtaining samples

 (,), , (,), where is chosen by the adversary

 and () for all .

 We model such a

Chosen-Plaintext Attacks (CPA)

t t i

i k i

m c m c m

c Enc m i







n adversary by giving it access to an

, viewed as a "black box" that on query returns a

 ciphertext c ().

 Orac

encryption

 oracle (

le ()
(

)

)
k

k

k

k

m

Enc m

m
Enc

Enc m

Enc










49

cpa

,

1. A key (1) is generated.

2. The adversary is oracle a given input 1 and

(

 to (). It may

 request the oracle to encrypt messages of

cces

)

s

CPA indistinguishability experiment PrivKA

n

n

k

n

k Gen

Enc







0 1 0 1

its choice.

3. The adversary chooses two message , with ; and

 is given a challenge ciphertext (), where {0,1}.

4. The adversary continues to have oracle access to () and ma

k b u

k

m m m m

c Enc m b

Enc



 



0 1.

5. The adversary finally outputs a bit .

6. The output of the experiment

y

 even

is 1 iff

 request the encryptions

.

Note: The CPA here is an CPA.

of and

adaptive

b

b

m m

b





50

 indistinguishable encryptions under a chosen-plaintext attack,

 A private-key encryption scheme has

or is if for all PPT adversaries , there is a

De

f

CPA-secure,

inition:

neglig

CPA-security

A



cpa

,

ible

 function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the randomness used by

 as well as the randomness used in the exp

A

negl n n

n n

A


    

()

0 1cpa

,

0 1

eriment.

(1 , , , ()) :
 Pr PrivK () 1 Pr

{0,1}, (1), , (1)

kEnc n

k b

A n n

u

A m m Enc m b
n

b k Gen m m A





 
     

  


 

51

1 2 1

0 0 0 0 1 1

 One approach is to model the adversary as having oracle access

 to () and having it produce two message lists

 (, , ...,) and (,

CPA-security for multiple encryptions

k

t

Enc

M m m m M m



 



2

1 1

,

, ,

0 1

 , ...,)

 Alternatively, we use an oracle LR-Enc (), where is a key

 and {0,1}. (LR-Enc () is denoted by LR () in the book.)

 ,
 Oracle

()

t

k b

k b k b

k b

m m

k

b

m m

Enc m



  







,

The adversary is to guess t

LR

he

-Enc ()

 value of .

k b

b



52

LR

,

,

-cpa

1. A key (1) is generated.

2. A bit {0,1} is chosen.

3. The adversary is given input 1 a oracle accend to LR-Enc ().

4. The adversary ou

s

(

t

s

)The LR-oracle experiment PrivK

n

u

n

b

A

k

n

k Gen

b

A

A









puts a bit .

5. The output of the experiment is 1 iff .

b

b b





53

 indistinguishable encryptions under a chosen-plaintext attack,

 CPA-

multipl

 A private-key encryption scheme Def has

or

secure

inition

for

e

mult iis p

e

:

le

CPA-security for multiple encryptions

 

LR-cpa

,

if for all PPT adversaries ,

 there is a negligible function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the pro

n

bability is taken over the ra

cryptions,

A

A

negl n n

n n
    

ndomness used by

 as well as the randomness used in the experiment.

 For any private-key encryption scheme,

 CPA-security CPA-security for multiple e

Theore

ncry

m:

p .

tions

A





Constructing CPA-Secure

Encryption Schemes

K&L: Section 3.5

54

55

Pseudorandom
generator

56

 Let be the set of all functions :{0,1} {0,1} .

 Construct an encryption scheme as follows.

 Key generation: uniformly choose a function

Func

A CPA-secure encryption scheme (inefficient)

n n

n f

f













.

 To encrypt a message {0,1} , uniformly choose a

 string {0,1} , and encrypt as .

 To decrypt a ciphertext , , co

Fun

mpute : ()

c

()

.

: ,

u

n

n

n

u

m

r m

c r s m s

r

r

c r m f

f



  



 



57

cpa

,

 The encryption scheme is CPA-secure.

 Consider any arbitrary adversar

Th

y .

 In the experiment PrivK (), let : , () be the

 challenge cipher

eo

text

re

.

m:

Proof (sketc

)

S

h .

bA

A

n c m fr r












ince () is uniformly random,

 indistinguishable , on 's query , the oracle happens

 to return : , () , in which case will learn ().

 This

u

 may occur wi

nle

th probability

ss

m

f r c is

A m

c mr f r A f r 

cpa

,

 at most poly() 2 , where

 poly() is an upper bound on the number of queries may

 make to the oracle. Thus,

1 1
 Pr PrivK () 1 poly() 2 negl().

2 2

n

n

A

n

n A

n n n


     
 

58

key

key

 The secret key here is . Q: What's its length?

 Suppose we label the elements/functions in Func with strings

 {0,1} . What's the key length ?

 How many elements/functions are t

n

f

k









2

here in Func ?

 View each function as a table of 2 strings of length .

 There are 2 choices (0 or 1) for each of the 2 bits.

 So, there are different functions. I.e., Fun2
n

n

n

n

n

n

n





key 2

2

2 which is infeas

c .

 Thus, log 2 ible.,

2

2

n

n

n

n

n

n n







  

59

 Solution:

 Choose a "small" subset of , say , such that

 and are .

 Then, randomly picking a func

indistinguish

tion from (as the key)

a

 wi

ble

n n

n n

n

Func Func

Func Func

Func









ll be almost as good as randomly picking a function from

 .

 If we choose to contain no more than elements,

 the key length will be at most

2

.

 We will describe

n

n

n

Func

n

Func

 (which is a set of functions)

 as a single function with two parameters, called a keyed

 function.

nFunc

60

() () ()

()

 A : {0,1} {0,1} {0,1} for all 1,

 has two inputs.

keyed function

keyThe first one is called the and denoted .

 Each key {0,1} induces a single-input functi

Keyed functions

a n b n c n

a n

F n

k

k





  



() ()

key in out

on:

 :{0,1} {0,1}

 () (,)

 is associated with three functions, (), (), () (often written as

 (), (), ()) which indicate the leng

b n c n

k

k

F

F x F k x

F a n b n c n

l n l n l n







 

key in out

ths of , , and ().

 is if () () () .

 If is length-preserving, induces a set of functions for each :

 :{0,1}

Q: In general, wh

{0,1} | {0,1}

length-pres ng

a

ervi

k

n n n

k

k x F x

F l n l n l n n

F F n

F k

 







 

t set of functions does induce?F

61

 A : {0,1} {0,1} {0,1}

 has two inputs. The first one

keyed length-preser

 is called the

ving function

key and denoted .

 Each key {0,1} induces a single-

Keyed Length-Preserving functions

n n n

n

F

k

k





 

 

input function:

 :{0,1} {0,1}

 () (,)

 That is, induces a set of functions for each :

 :{0,1} {0,1} | {0,1}

n n

k

k

n n n

k

F

F x F k x

F n

F k 







62

 Let be a keyed function.

 Recall Func the set of all functions :{0,1} {0,1} .

length-preserving

pseudorandom functi is a if the two ensembles of on sets

Pseudorandom functions

n n

n

F

f

F







 

    

()

 | {0,1} and Func

 are polynomially indistinguishable, i.e., if for every PPT

 distinguisher , it holds:

 Pr (1) 1: {0,1}

| k

n

k n
n

n n

u

F

n
F k

D

D k








   
() Pr (1) 1: Func negl()|f n

u nD f n     

63

key outin

outin

() ()()

()()

 Let : {0,1} {0,1} {0,1} be a keyed function.

 Define Func the set of all functions :{0,1} {0,1} .

 pseudorandom functis a ion

General pseudorandom functions

l n l nl n

l nl n
n

F

f

F

 











    key

()

()

if the two ensembles of sets

 | {0,1} and Func

 are polynomially indistinguishable, i.e., if for every PPT

 distinguisher , it holds:

 Pr (1) 1: | k

l n
nk

nn

F n

F k

D

D k






 key

()

()
{0,1}

 Pr (1) 1: Func negl()|

l n

n
nu

f

u

D f n

 
 

     

64

   

 Suppose (,) .

 Then, () .

 Is a pseudorandom function?

 For any and , () () 1 .

 Based on this, we design

Example keyed length-preserving function

k

n

k k

F k x k x

F x k x

F

k x F x F x k x k x

 

 

   











 

 a distinguisher as follows.

 Given a function (as an oracle), asks the oracle to

 compute () and () for some {0,1} , say 0 .

 If () () 1 , returns 1, else returns 0. We

n n

n

D

h D

h x h x x x

h x h x D

 

 

()

()

 have

 Pr (1) 1: {0,1} 1

 Pr (1) 1: Func 2

kF n n

u

f n n

u n

D k

D f



 

    

    

65

 

()

()

2

2

2

Pr (1) 1: Func

Pr is picked Pr (1) 1

1
Pr () () 1

2

1 2

22

1

2

n

n

n

f n

u n

f n

f

n

n
f

n

nn

n

D f

f D

f x f x





   

    

     

 







66

() ()

 A function : is called a permutation if it is

 bijective (one-to-one and onto).

 We are interested in permutations :{0,1} {0,1} ,

 especially with () .

Permutations

l n l n

f X X

f

l n n

 

 



67

 A keyed permutation is a keyed function for which

 each is a permutation.

 Perm , the set of all permutations :{0,1} {0,1} .

 A length-preserving keyed permutat

pPseudorando ermutatio nsm

k

n n

n

F

F

f









()

()

ion is a

 if for every PPT distinguisher , it holds:

 Pr (1) 1: {0,1}

 Pr (1) 1: Perm n

pseudorandom

 pe

egl()

rmutation

|

|

kF n n

u

f n

u n

F

D

D k

D f n





   

    





 A pseudorandom permutation is also a pseudorandom

 function (assuming

Theore

)

m:

() .l n n

68

 Let be a pseudorandom function. Construct an encryption

 scheme for messages of length as follows.

 : on input 1 , output a key {0

CPA-secure encryption using pseudorandom functions

n

u

F

n

Gen k 







,1} .

 : on input a key {0,1} and a message {0,1} ,

 choose uniformly a string {0,1} and output the ciphertext

 : , () .

 : on input a key {0,1} and a ciphertext ,

n

n n

n

u

k

n

Enc k m

r

c r F r m

Dec k c r





 



 

  , output

 the plaintext message : () .k

s

m F r s 

69

kF

70

 

 The encryption scheme is CPA-secure.

 In scheme , a funct

Theorem:

Proof (basic idea).

ion is used as a key.

 In scheme , a function : {0,1} is used as a key.

n

n

k k

f Func

F F k



 





 



 

cpa cpa

, ,

 Since and : {0,1} are indistinguishable, it can be

 shown that

 Pr PrivK () 1 P

by reduction

r PrivK () 1 negl()

 We alread

y know

n

n k

A A

Func F k

n n n 



        

cpa

,

cpa

,

1
Pr PrivK () 1 negl().

2

1
 Thus, Pr PrivK () 1 neg l . ()

2

A

A

n n

n n





   
 

    

71

1

 Since is also a pseudorandom function, we may encrypt

 a message {0,1} as before:

 : , , where {0,1} . //CPA-secure//

 If

()

))

1 (

peIf is a pseudorando rmu nm tatio

n

n

u

k

kF r

F

m

c r r

F

m

m

F







 





is efficiently computable, we may also encrypt as

 : () //deterministic,

()

 so not CPA-secure//

 : , , where {0,1} . //CPA-secure//

 2)

 3

Q:

)

How

k

n

k u

m

F r

c F

r m

m

c r



 

to decrypt a ciphertext , ?

 (Assume that is efficiently computable.)k

c r s

F



Modes of Operations

K&L: Section 3.6.2

72

73

*

 Now let's see how to encrypt a message of arbitrary length

 using a pseudorandom function or permutation.

 Encryption algorithm: On input {0,1} and key ,

 Pa

Encrypting long messages

m k





 1 2 3

d the message so that its length is a multiple of (block size).

 Divide the padded message i nto blocks, say

 , , , ,

 Individually enc

 rypt each block :

t

i

n

m

m m m m m

m



1 1 2 2

 {0,1} and : ()

 The final ciphertext is

 : (,), (,), , (,)

 The ciphertext is twice as lo

ng as the message.

n

i u i k i i

t t

r c F r m

c r c r c r c

  



 Ineffi cient!

74

1 2

 More efficient ways to do it are traditionaly called modes of

 operation (of block ciphers).

 generate a single random string Mai {0,1} and

 derive ,

n i

, ,

dea:

Modes of operation

n

u

t

IV

r r r







1 2

 from . (: Initialization Vector)

 The ciphertext will be of the form

 Important modes of operation:

 Counter mode (CTR):

 , , , ,

i

tc I

IV IV

r IV

V c

i

c c











 

 

 

1 1

0 1

0 1

 Output feedback mode OFB : , ()

 Cipher feedback mode CFB : , :

 Cipher block chaining mode CBC :

 , :

i k i

i i

i i

r IV r F r

c IV r c

c IV r c







 

 

 

75

 

1 2

1 2 3

 Idea: The strings , , , are for 1 .

 Thus, to encrypt a message , , , , with key

 Choose a random string {0,1} .

 Encrypt as

Counter mode (CTR)

t i

t

n

u

r r r r IV i i t

m m m m m k

IV

m

   







 

1 2 : , , , , , where : ()

 :

 St Blocks can be encrypted or decrypted re in parng ath: llel

t i k i i

i

c IV c c c c F r m

r IV i



  

 

 or in a “random access” fashion.

Counter Mode (CTR)

76

1 2 3 r r r

77

 

1 2 1 1

1 2 3

 Idea: The strings , , , are and ()

 Thus, to encrypt a message , , , , with key

 Choose a random string {0,1} .

 Enc

Output feedback mode (OFB)

t i k i

t

n

u

r r r r IV r F r

m m m m m k

IV











 

1 2

1 1

 rypt as : , , , ,

 where : ()

 : , and : () for 2

t

i k i i

i k i

m c IV c c c

c F r m

r IV r F r i t



 

   

Output feedback

78

1 2 3 r r r

79

 

1 2

0 1

1 3

1

2

 Idea: The strings , , , are chosen to be

 where and is the previous cipher block.

 Thus, the ciphertext of , , , , is

 : ,

Cipher feedback mode (CFB)

t i i

i

t

r r r

c IV c

m m m m

c

m

r 





 



 0 1 2

0

1

 : , , , ,

 where :

 for 1 .: ()i k i i

tc c c c c

c IV

F m i tc c  





 

How is Cipher Feedback (CFB)

different from OFB?

80

1 2 3 r r r

81

 

1

1 2

 Assume is a pseudorandom permutation and

 is efficiently computable.

 Each block is encrypted as .

 The strings , , , are chosen to be

Cipher block chaining mode (CBC)

k

i i k i

t i

i

F F

m c F r m

r r rr



 



 

 

0 1

1

1

1

2 3

0 2

0

 for 1 ,

 with , and being the previous cipher block.

 Thus, the ciphertext of , , , , is

 : , , , ,

 where :

 : (

i

t

t

i

i

k

i t

c IV c

m m m m m

c c c c c

c IV

c

c

F





 











 1) for 1 .i ic m i t   

Cipher block chaining (CBC)

82

Chained CBC

83

1 2 3 4 5

 Used in SSL 3.0 and TLS 1.0, but is .

 Message 1: (, ,) M

not

essa

CPA

ge

-se

2:

cure

 (,)m m m m m



IV’

CBC

Chained CBC

84

1 2 3 4 5

 Used in SSL 3.0 and TLS 1.0, but is .

 Message 1: (, ,) M

not

essa

CPA

ge

-se

2:

cure

 (,)m m m m m



85

 

 

 

1 2 3

1 2 3 1 1

1 2 3

 Let adversary chooses two messages , , ,

 , , such that .

 Let , , , be the challenge ciphertext.

 knows the oracle is going to

Insecurity of Chained CBC

A M m m m

M m m m m m

C IV c c c

A



  







 3

4 1 3 4

4

1 4

 use in the next encryption.

 So, prepares such that , and asks

 the oracle to encrypt it. Suppose receives from the oracle.

 Depending on whether , knows whether

c

A m IV m c m

A c

c c A

  

 is the

 encryption of or .

C

M M 

86

1 2 3 1 2 3

1 2 3

41 3

Is (, , ,) the encryption of (, ,)

 or (,

,)?

C IV c

IV

c c M m m m

c

M m m m

m m 







 

1 4

 ?c c

1 1 or ?m m

87

 

 

1 2 3

 Use a pseudorandom permutation .

 , , , ,

 Each block is encrypted as .

 The resulting scheme is deterministic and CPA secure.

 Used o

n t

n

o

l

Electronic codebook mode (ECB)

t

i i k i

F

m m m m m

m c F m















y for sending a short message (in a single block).

Electronic Code Book (ECB)

88

89

 If is a pseudorandom function or permutation, then

 OFB, CFB, CTR are CPA-secure.

 If is a pseudor pandom , then

ermutati

 is CPA-secu

on

CBC re.

Security of CBC, OFB, CFB, CTR

F

F





Chosen-Ciphertext Attacks

K&L Section 3.7

90

91

cca

,

1. A key (1) is generated.

2. The adversary is given input 1 and oracle access to (

 .

3. The adversary ch

()

ooses two message

) and

()

CCA indistinguishability experiment PrivK A

n

k

k

n

n

En

k

c

G

Dec

en

m









0 1 0 1, with ; and

 is given a challenge ciphertext (), where {0,1}.

4. The adversary () ancontinues to have oracle access t

not allowed to request t

o ,

 but is he de

()

cr

d

yp

k k

k b u

m m m

c Enc m b

Enc Dec 



 

5. The adversary finally outputs a bit .

6. The output of the experiment is 1 iff .

Note: The CCA defined here has the capabilities of both

tio

 CPA and

"pure CCA

n of itself.

".

b

b b

c





92

 indistinguishable encryptions under a chosen-ciphertext attack,

 A private-key encryption scheme has

 CCA-secure, or is if for all PPT adve

Definiti

rsaries , there is a negli

 on:

CCA-security

A



cca

,

gible

 function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the randomness used by

 as well as the randomness used in the ex

A

negl n n

n n

A


    

(), ()

0 1cca

,

0 1

periment.

(1 , , , ()) :
 Pr PrivK () 1 Pr

{0,1}, (1), ,)

(1

k kEnc Dec n

k b

A n n

u

A m m Enc m b
n

b k Gen m m A

 



 
     

    



93

LR-cpa

,

LR-cca

, : same as PrivK () excExperiment PrivK ()

Definition

ept ... (what?)

 A private-key encrypt

 ind

ion scheme ha

multipleistinguishable

s

:

CCA-security for multiple encryptions

A An n 



or is if for all PPT adversa

encryptions under a chosen-

ries ,

 there is a neg

ciphertext attack,

 CCA-secure for

ligible function () suc

multip

h that

encryption

 (for all

s,

)

 Pr P

l

ri

e A

negl n n

LR-cca

,

1
vK () 1 negl()

2

 where the probability is taken over the randomness used by

 as well as the randomness used in the experiment.

 For any privatTh e-eore key encrym ptio: c n s he

A n n

A


  



 

me,

 CCA-security CCA-security for multiple encryptions.

94

 The encryption schemes we have seen so far are .

If a ciphertext manipulated in a controlled () can be ,

 then the encryption scheme is not CC

not CCA-secure

A-secure

 w

 ay

.

CCA insecurity

kc Enc m





  

0 1

Example: consider the scheme () , () .

 The adversary chooses any two messages , of equal length.

 Let the challenge ciphertext be , where

 : () , wit

h

k k

k b

Enc m r F r m

m m

r c

c F r m

 

  {0,1}.

 The adversary modifies , to , , () , which

 is a legitimate ciphertext of .

 Requesting the oracle to decrypt , , the adversary will g

et

 an

d hen

k b

b

b

b

r c r c r f r m

m

r c m



 

ce know the value of .b

95

 We will see that:

 CPA-secure encryption secure MAC

 CCA-secure encryption

Constructing a CCA-secure encryption scheme







Padding-Oracle Attack:

a concrete example of (partial)

chosen-ciphertext attacks

K&L Section 3.7.2

96

97

 We will attack the CBC-mode encryption scheme that uses

 PKCS#5 padding.

 : block length (in bytes).

 : pad length (in byt 1 255es).

 PKCS#5 padding

 The val

o

 :

ue

The Setting

L

b b L









  

f (as an 8-bit binary) is repeated times.

 Examples: 0x01, 0x0202, 0x030303, 0x04040404.

 refers to the (w/o

padding).

Message original message

Encod refers to the ed data padded message

b b





 The encoded data is encrypted using CBC-mode encryp

.

. tion

98

 On receiving a ciphertext, the receiver decrypts it to recover the

 encoded data and

checks if the padding is correct.

If , the receiver typically sends back anot cor "ba

 rec pt d

A Padding Oracle



 adding"

 error message (e.g., in Java, javax.crypto.BadPaddingException).

 Such receivers provide the adversary with a

 which may

padding oracle

partial decryption

obe viewed racle as a .



 ciphertext
 Padding Oracle

error (if padding incorrect)

 Using such a padding oracle, the adversary can recover the

 original m ge.

essa







99

1 2

1 2

2 2 1

 Suppose the encoded data is , , unknown to the adversary;

 and the ciphertext is , , , known to the adversary.

 Recall: ()

 a

Modify the encoded data in a controlled fashion

k

m m

IV c c

c F m c 



1

2 2 1

1

2 2 1

1 2 1 2

1 2 1 2

nd so () .

 Thus, () . That is,

 , , ,

, , ,

 By modifying the ciphertext, the adversary can modify the

 en

coded da

k

k

Dec

Dec

m F c c

m F c c

IV c c m m

IV c c m m





 

 









 











ta in a controlled fashion and then ask the oracle

 if the padding (of the modified encoded data) is correct.

Cipher block chaining (CBC)

100




1

=
m

101

2

 Example: modifying the 5th byte will result in a padding error.

 0x03 0x03 = 0x33 0x22 0x11 0x44

 In general, to find the pad length, the adversary runs:

0

x03

Find out the pad length

m

b





1

 1

 modify the th byte of

 send the resulting ciphertext to the receiver/oracle

 if receiving a padding error then return : (1)

i L

i c

b L i



  

for to do

102

2

2

Having known 3, how to recover the byte ?

 =

 = 0x0 0x0 0x0

 Try (how?) every s

0x03

0x03 0x

t

4

r

0

3

4 4

Recover the message byte by byte

b

m x y z

m x

w

w

w iy z









 

8

38 8 8

1 1

ing {0,1} until there is

 for which , 0x04 0x04

 How: modify to , with 0 0 0 0x03 0x04

 padding e

 and pr

rror

esent the resulting ciphe

o

rtex

,n

i i

i w i w

i

i

c ic



    

   

1 2

1 2

t , , to the

 oracle, which after decryption will see , .

iIV c c

m m



 

103

2

2

8

Having recovered , how to recover ?

 = 0x03 0x03 0x0

 = 0x0 0x0 0x0 0x0

 Try

5

 every string {0,1}

5

5

3

u

5

Recover the message byte by byte

z

z

w

m x y

m

w

x y z i

i









  

38 8

1 1

1 2

ntil no padding error, then

 0x05 0x05

 How: modify to , with 0 0 0x05 0x03 0x05

 and present the resulting ciphertext , , to the

i i

i

z i z i

c c w

IV c c

i

    

    



1 2 oracle, which after decryption will see , .

m m 

