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Symmetric-Key Encryption

CSE 5351: Introduction to Cryptography

Reading assignment:

• Chapter 3 

• Read sections 3.1-3.2 first (skipping 3.2.2)
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  A nonegative function :  is said to be 

    if for every positive polynomial ( ),  there is an integer
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  In perfect indistinguishability (perfect secrecy), 

    the adversary has

    unlimited  computing power, 

      success rate 

      also, message

 

1 2;

Relaxing the security requirement              





 length .

 Now we relax the notion of perfect indistinguishability by

      limiting adversaries to having computing power,

      allowing the success rate to be 
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  The  in the previous slide is called a 

which indicates the 

  We will associate an encryption scheme  with a 

    secureity parameter , an

security

    parameter, key len
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  Probabilistic polynomial-time algorithms

  Polynomial-time :  the running time is polynomial in .

   is the number of bit

input le

s of the

ngth

Input le  input.

  What is the len

ngth

gth of 

PPT Algorithms







  in binary,  and what is the length of 1 ? 

  What is the difference between these two statements:

      ( ) is a PPT algorithm.

      (1 ) is a PPT algorithm.

n

n

n

A n

A


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 A tuple of polynomial-time algorithms: ( , , )

 Key generation algorithm :   On input 1 , outputs a

    key {0,1} .  We 

 

write 

 

(

Private-key encryption scheme w. security parameter 
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1 ).  ( : security parameter.)

 Encryption algorithm :   On input a key  and a message

    {0,1} , outputs a ciphertext .  We write ( ).  

 Decryption algorithm :   On input a key  an
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     outputs a message  or an error symbol . 
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              ( ) .
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( ) If message space {0,1} ,  then ( ,  ,  ) is

    said to be a  private-key encryption scheme for 

    messages of length ( ).

 If (1 ) simply outputs {0,1} , we omit

fixed-l t

 

h

  

eng
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n n

u
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  
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    denote the scheme by ( , ).  This is almost always the case.

 

n

Enc Dec
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eav

,

PPT  singl Adversary:  eavesdropper with a ciphertext.

 ( , , ) :  an encryption scheme with security parameter .

 Imagine a 

 

game pla

 

(

 

)

e 
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 A private-key encryption schem

   indistinguishab

e has

 (or is

) if for

le encryptions against an eavesdropper 

    E
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AV-secure
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 For 0 or 1 (fixed),  let PrivK ( , ) denote the previous

    experiment with the fixed  used. 

 Let output PrivK ( , )  denote the adversary's output.
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 Let  denote the th bit of . 

 If an encryption scheme is EAV-secure, then from a ciphertext

    ( ),  it is infeasible for the adversary t
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Adversaries cannot learn any bit of the plaintext
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 Secure: EAV-secure, CPA-secure, or CCA-secure. 

 Secure private-key encryption schemes may be constructed from:

  Pseudorandom generat

 

 

ors

  Pseudorandom functions

    

    

 

Secure Encryption Schemes





  Pseudorandom permutati   ons.



Pseudorandom Generators and 

Stream Ciphers

Encryption schemes using pseudorandom 

generators

K&L: Section 3.3

15
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  Vernam's one-time pad scheme is perfectly secure against 

    single-ciphertext eavesdropper.   

  Drawback: it requires a random key as long as the message.

  Solution: use a short key as

Motivation





  seed to generate a "pseudorandom"

    key that is as long as needed. 

  This is the basic idea of stream ciphers.
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  The term "stream cipher" may refer to the entire encryption scheme

    or just the pseudorandom generator.

Stream ciphers


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  Informally, a pseudorandom generator is an algorithm  that given

    a ( )  string ,  outputs a " " 

    (i.e.,pseudorandom) string l

short  truly random ra

onge

nd
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om-like

What is a pseudorandom generator?
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  Informally, a string  is " " if it is  to tell

    whether or not  is generated by a  generator.
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   
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  In the above, we were actually talking about the indistinguishability

    between two ensembles (sequences) of sets:   and .
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  Let ( ) be a polynomial such that ( )  for all 0.  

  Let  be a deterministic polynomial-time algorithm that, for any

   input string {0,1} ,  outputs a st

Definition of pseudorandom generator

n

n n n

G
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  







( )ring ( ) {0,1} .

   is said to be a  with  ( )

    if for every polynomial-time distinguisher , 
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1 1

1 11

  Let ( ) ( ) for {0,1} .

  Expansion facto

not

r ( ) 1.

   is  a pseudorandom generator:

1 if  
      For {0,1} ,  let ( )

0

Example:  pseudorandom generainsecure tor
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1

otherwise

      Pr ( ( )) 1:  {0,1} 1  

      Pr ( ) 1:  {0,1} 1 2

      Difference between the two probabilities is not negligible.

n

u

n

u

D G s s

D r r 





    

    



23

  A string  is said to be a  if it is generated 

    by a true random generator (i.e., {0,1} , where ).

  A string  is said to b

random string

pseudorandom stringe a  if it is generated 
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( )

   by a pseudorandom generator.

  What if the distinguisher  has unlimited (or exponential) time?
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  If one-way functions exist, then pseudorandom generators

    exist.     

  That is, pseudorandom generators can be constructed from

    one-way functions.  

  Chap

Existence of pseudorandom generators





 ter 7 of the K&L book shows how to construct pseudorandom

    generators from one-way permutations. 

  True pseudorandom generators are slow for applications.

  In practice, algorithms such as RC4 are 



 used. 
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  Let :{0,1} {0,1}  be a one-way function.

  Let hard-:{0,1} {0,1} be a  of .

     A boolean function defined on the do

co

main of 

re pred

 

e

.

 

icat

Existence of pseudorandom generators (basic idea)

n n

n

f

b f

f

 



0

0

0 1 2 ( ) 1

   Easy to compute ( ) from .

     But hard to compute ( ) from ( ).

  Given seed , let .

  Starting from , apply  repeatedly:

               

  Let ( ) (

f f f f

l n

b x x

b x f x

x x x

x f

x x x x

G x b
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



        0 1 2 ( ) 1),   ,  ,  ,   .

   is a pseudorandom generator with expansion factor ( ).

l nx b x b x b x

G l n


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2

  Let  for two large primes ,  .

  Let ( ) mod .                                     //one-way function//

  Let ( ) the least significant bit of

Blum-Blum-ShubExample:  pseudorandom generator

n pq p q

f x x n

b x

 





      

0 1 2 ( ) 1

0 1 2 ( ) 1

         //hard-core predicate//

               

  Let ( ) ( ),   ,  ,  ,   .

   is a pseudorandom generator with expansion factor ( ).

f f f f

l n

l n

x

x x x x

G x b x b x b x b x

G l n





  

 


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0

  Suppose 29 31 899.

  Suppose 100.

  Then we have the sequence

            100,  111,  634,  103,  720,  576,  45,  227,  286,  886,  169,  

            692,

Blum-Blum-ShubExample:  pseudorandom generator

n pq

x





   





 596,  111,  634,  103,  720,  

  The generated bits are 01010011001001010
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  From a pseudorandom generator with expansion factor ( ),  we

    can easily construct an EAV-secure ( )-bit encryption scheme.

  : a pseudorandom

Encryption schemes based on pseudorandom generators

n

n

G





 

   
( )

 generator with expansion factor ( ).

  Key generation: on input 1 , outputs a key 0,1 .

  Encryption:  on input a key 0,1  and a message 0,1 ,

                       outputs the ciphertext 
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k
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







   
( )

 : ( ).

  Decryption:  on input a key 0,1  and a ciphertext 0,1 ,  

                       outputs the   : ( ).

  Denote this scheme by .
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c m G k

k c

m c G k


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 








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0 0

1

  The scheme  constructed above is EAV-secure 

 (i.e. has indistinguishable encryptions against eavesdroppers). 

  If encrypting with a truely random 

I

s
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ntu

orem.

ng 
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Security

c rm

m

r

c









 1
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1 1

 perfectly indistinguishable

  If a pseudorandom string  is us( )
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ed instead:

     polynomially indistinguishable
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P

0 1

    We will show: 

Distinguishing between Breaking encryption scheme 

   random strings  and  (distinguishing between

pseudorand

By 

om strings ( )   ciphertexts  a

redu

nd )

  Not

n.

 

ctio

Proof sketch

r

G s c c









Pation.  A B:   A reduces to B in polynomial time.

  Roughly meaning that we can solve A using an algorithm for B as a 

    subroutine.   Hardness of A  hardness of B.

  Example?

     








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 
( )

  Let  be an arbitrary PPT adversary against encryption scheme .

  Construct a distinguisher :

      ,  given as input a string 0,1 ,  wants to determine 

        whether  is random or pseudor

l n
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       runs PrivK ( ) to obtain a pair of messages ,  0,1 .

       chooses {0,1},  sets : ,  gives  to ,  and 

        obtains  from .

       outputs 1 if ,  and out
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b A
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eav
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0 1

1

,

     

 adversary 
 against 
 encryption 
 scheme
 

                             

Run PrivK
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:

: ( )

Distinguisher 
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*

( ) eav

, 

*

( )

eav

, 

 Pr ( ) 1:  {0,1}  Pr PrivK 1   

   where  is Vernan's one-time pad.

 Pr ( ) 1:   : ( ),  {0,1}   

   Pr ( ) 1:  {0,1}
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        Pr ( ) 1
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D w w

D w




          



     

 

  

  

 

eav

, 

eav

, 

:   : ( ),  {0,1}   ( ) 

  So,  1 2   Pr PrivK 1   ( )

     Pr PrivK 1   1 2 ( )

      is EAV-secu

(Why?) 

re

 

 

|

| |

n

u

A

A

w G s s negl n

negl n

negl n





    

    

     

 


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  Stream ciphers require a new key for each message.

  In practice, Alice and Bob wish to share a permanent key  and

    use it to encrypt multiple messa

Encrypting multiple messages with a single key

k





ges.  One possible strategy:

     For each message , generate a random string  and use

        as a seed to the pseudorandom generator .  

     Include  in the ciph : ( ) :ertext, i.e .  

 

, k

m r

s k r

c Enc

G

mr



   

not necessarily EAV-

     

  Unfortunately, the resulting scheme is .  

    It requires  to be more than a pseudorandom 

 It is 

generat

probabilis

or for the

se

  

,  ( )

  sc

tic!

heme to be EA

cure

.

V-sec

r

G

m G k r



ure.



35

1 2

1 2

  At the beginning of a session, Alice and Bob agree on two keys

    and  (called session keys).

  Alice and Bob each run ( ) and ( ) to get two (long enough)

 

Using stream ciphers in a session

k k

G k G k





 

    

1 2

1 2 3

1 2 3 11 2 3

2

    pseudorandom strings, say  and . 

  Alice encrypts her sequence of messeges , , , ...  as

        , , , ... : , , , ... .

  Bob uses  for encryption in a similar way.

  

PS PS

m m m

c c c m m m PS

PS











In practice, a stream cipher is designed to generate a random string

    of desired length bit/byte by bit/byte byte on demand.
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 

  Most popular stream cipher

  Simple and fast

  Used in many standards

  Actually not a cipher,  but a practical,  approximate  

   pseudorandom generato

•

•

•

•

.  N tr o

The RC4 Stream Cipher (K&L: Section 6.1.4)

  Designed by Ron Rivest in 1987 for RSA Security,  

   and kept as a trade secret until

 truely pseudorandom.

 leaked out in 1

•

994. 
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  Two vectors of :

     [0],  [1],  [2],  ,  [255]

     [0],  [1],  [2],  ,  [255]

  Input Key (seed) : variable length, 1 to 256 bytes

  Initialization:

    1.   [ ] ,   for 0 255

 

byt

 

es

  2.

RC4

S S S S

T T T T

K

S i i i











  

   [0..255]  , ,  ... (until filled up)

          

T K K
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  Initial Permutation of :

        0

        for   0 to 255 do

                (   [ ]  [ ] )  mod  256

              Swap  [ ],  [ ]

  Idea: swapping bytes dependentl

RC4: Initial Permutation

S

j

i

j j S i T i

S i S j







  

 y of the input key.

  After this step, the input key will not be used.
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  Key stream generation:

        ,    0

        while  (true)

                  (   1 )  mod  256

                  (   [ ] )  mod  256

               Swap  [ ],  [ ]

  

RC4:Key StreamGeneration

i j

i i

j j S i

S i S j





 

 

               ( [ ]  [ ] )  mod  256

               output [ ]

  Idea: systematically keep swapping and producing

    output bytes

t S i S j

S t

 





Security of RC4

• RC4 is not a truly pseudorandom generator.

• The key stream generated by RC4 is biased. 

– The second byte is biased toward zero with high probability.

– The first few bytes are strongly non-random and leak 

information about the input key. 

• Defense: discard the initial n bytes of the keystream. 

– Called “RC4-drop[n-bytes]”.

– Recommended values for n = 256, 768, or 3072 bytes. 

• Efforts are under way (e.g. the eSTREAM project) to 

develop more secure stream ciphers.

40



The Use of RC4 in WEP

• WEP is an RC4-based protocol for encrypting data transmitted 

over an IEEE 802.11 wireless LAN.  

• WEP requires each packet to be encrypted with a separate RC4 

key. 

• The RC4 key for each packet is a concatenation of a 40-bit or 

104-bit long-term key and a random 24-bit R. 

41

lRC4 key:     Long-term key (40 or 104 bits)       R (24)

lHeader      R            Message           CRC

encrypted

802.11

Frame:



WEP is not secure

• Mainly because of its way of constructing the key

• Can be cracked in a minute

• http://eprint.iacr.org/2007/120.pdf

42

http://eprint.iacr.org/2007/120.pdf


Stronger Security Notions

K&L: Section 3.4

43
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  EAV-security  (against eavedroppers, ciphertext-only-attacks)

      one encryption

      multiple encryptions

  CPA-security (against chosen-plaintext attacks)

      one

Different levels of security





 encryption

      multiple encryptions

  CCA-security (against chosen-ciphertext attacks)

      one encryption

      multiple encryptions


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mult

,

 Adversary: eavesdropper with multiple ciphertexts

 A game between Bob and an adversary :

  The adversary, given 

 

 

lisinput 1 , sele    c

( )

ts two 

Multiple-ciphertext indist. experiment PrivK

n

A

A

n





1 2 1 2

0 0 0 0 1 1 1 1

0 1

        ( ,  ,  ..., ) and ( ,  ,  ..., )

        such that  for all .

  Bob chooses a key (1 ) and a bit   {0,1};

        computes ( ) for all

ts of messages

  

t t

i i

n

u

i i

k b

M m m m M m m m

m m i

k Gen b

c Enc m

 



 



1 2

    

 ,  and gives the challenge

        ciphertext list ( ,  ,  ..., ) to the adversary.

  The adversary outputs a bit .

  The output of the experiment  is 1 iff  .   

t

i

C c c c

b

b b






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 A private-key encryption scheme  

   indistinguishabl mu

D

l

ef

ti

init

plee  en

has

 

if for a

io

cryptions against an eavesdropper

 ll PPT adversaries

n:   

   

Multiple-ciphertext indist. against an eavesdropper

 

mult

, 

 ,  there is a negligible function ( )

    such that (for all )

1
         Pr PrivK ( ) 1   negl( )

2

    where the probability is taken over the randomness used by ,

    by Bob, by , an

A

A negl n

n

n n

A

Gen


    

0 1mult

, 

0 1

d by .

(1 , , , ( )) :  
 Pr PrivK ( ) 1 Pr

{0,1},  (1 ),  , (1 )
 

n

k b

A n n

u

Enc

A M M Enc M b
n

b k Gen M M A


 
     

 


 
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 If the  of an en

   

cryption scheme (Gen,Enc,Dec)

 is deterministic, then the scheme  have indisting

Theorem:

cannot u

   

Deterministic encryption schemes

are not multiple-ciphertext indistinguishable

Enc  

0 1

1 2

ishable

     encryptions against an eavesdropper.

 Proof.  Suppose  is deterministic.  

    Let (0 ,  0 ) and (0 ,  1 ).   Let the challenge ciphertext

    list be  

mult

( ,  ).

    What c

 

i

a

ple

n n n n

Enc

M M

C c c

 





1 2 1 2n  say if  (or if )?

 For example, Vernam's one-time pad (for a fixed ) is  

    single-ciphertext indistinguishable, but not multiple-ciphertext 

    indistinguis

 

 

hable.

  

A c c c c

n






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1 1

  The adversary is capable of adaptively obtaining samples

    ( ,  ), , ( ,  ),  where  is chosen by the adversary

    and  ( ) for all .

  We model such a

Chosen-Plaintext Attacks (CPA)

t t i

i k i

m c m c m

c Enc m i







n adversary by giving it access to an 

, viewed as a "black box" that on query  returns a

    ciphertext c ( ).

          
                       Orac

encryption

    oracle (

le ( )
(

)

)
k

k

k

k

m

Enc m

m
Enc

Enc m

Enc









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cpa

,

1. A key (1 ) is generated.

2. The adversary is oracle a given input 1  and

(

  to ( ).  It may

    request the oracle to encrypt messages of 

cces

)

s

CPA indistinguishability experiment PrivKA

n

n

k

n

k Gen

Enc







0 1 0 1

its choice. 

3. The adversary chooses two message ,   with ;  and

    is given a challenge ciphertext ( ),  where {0,1}.

4. The adversary continues to have oracle access to ( ) and ma

k b u

k

m m m m

c Enc m b

Enc



 



0 1.

5. The adversary finally outputs a bit .

6. The output of the experiment  

y

    even

is 1 iff 

 request the encryptions 

.

Note:  The CPA here is an  CPA.

of  and 

adaptive

b

b

m m

b




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   indistinguishable encryptions under a chosen-plaintext attack,

    

 A private-key encryption scheme  has

 

or is if for all PPT adversaries ,  there is a 

De

 

f

CPA-secure,

inition: 

neglig

  

 

CPA-security

A



cpa

, 

ible

    function ( ) such that (for all )

1
         Pr PrivK ( ) 1   negl( )

2

    where the probability is taken over the randomness used by 

    as well as the randomness used in the exp

A

negl n n

n n

A


    

( )

0 1cpa

, 

0 1

eriment. 

(1 , , , ( )) :  
 Pr PrivK ( ) 1 Pr

{0,1},  (1 ),  , (1 )
 

kEnc n

k b

A n n

u

A m m Enc m b
n

b k Gen m m A





 
     

  


 
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1 2 1

0 0 0 0 1 1

  One approach is to model the adversary as having oracle access

    to ( ) and having it produce two message lists

        ( ,  ,  ..., ) and ( ,

CPA-security for multiple encryptions

k

t

Enc

M m m m M m



 



2

1 1

,

, ,

0 1

 ,  ..., )

  Alternatively, we use an oracle LR-Enc ( ), where  is a key

    and {0,1}.   (LR-Enc ( ) is denoted by LR ( ) in the book.)

 

    ,  
                       Oracle 

( )

t

k b

k b k b

k b

m m

k

b

m m

Enc m



  







,

The adversary is to guess t

LR

he

-Enc ( )

 value  of .   

k b

b


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LR

,

,

-cpa

1.  A key (1 ) is generated. 

2.  A bit {0,1} is chosen.

3.  The adversary  is given input 1  a oracle accend  to LR-Enc ( ).

4.  The adversary  ou

s

(

t

s

)The LR-oracle experiment PrivK

n

u

n

b

A

k

n

k Gen

b

A

A









puts a bit .

5.  The output of the experiment  is 1 iff .

b

b b




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   indistinguishable  encryptions under a chosen-plaintext attack,

     CPA-

multipl

 A private-key encryption scheme  Def has

 

or

 

secure 

inition

for 

e

mult iis p

 

e

: 

le 

CPA-security for multiple encryptions

 

LR-cpa

, 

if for all PPT adversaries ,  

    there is a negligible function ( ) such that (for all )

1
         Pr PrivK ( ) 1   negl( )

2

    where the pro

n

bability is taken over the ra

cryptions, 

A

A

negl n n

n n
    

ndomness used by 

    as well as the randomness used in the experiment. 

   For any private-key encryption scheme,  

            CPA-security    CPA-security for multiple e

Theore

ncry

m:

p .

 

tions

A







Constructing CPA-Secure 

Encryption Schemes

K&L: Section 3.5

54
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Pseudorandom
generator
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  Let  be the set of all functions  :{0,1} {0,1} .

  Construct an encryption scheme  as follows.

  Key generation:  uniformly choose a function 

Func

 

A CPA-secure encryption scheme (inefficient)

n n

n f

f













 

 

.

  To encrypt a message {0,1} , uniformly choose a

    string {0,1} ,  and encrypt  as .

  To decrypt a ciphertext , ,  co

Fun

mpute : ( )

c

( )

.

: ,

u

n

n

n

u

m

r m

c r s m s

r

r

c r m f

f



  



 


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cpa

, 

   The encryption scheme  is CPA-secure.

    Consider any arbitrary adversar

Th

y .  

    In the experiment PrivK ( ),  let : , ( )  be the

    challenge cipher

eo

text

re

.

m:

Proof (sketc

  

)

S

h .

bA

A

n c m fr r












 

ince ( ) is uniformly random,   

    indistinguishable , on 's query ,  the oracle happens

    to return : , ( ) , in which case  will learn ( ).

    This

u

 may occur wi

nle

th probability

ss

m

f r c is

A m

c mr f r A f r 

cpa

, 

 at most poly( ) 2 ,  where 

    poly( ) is an upper bound on the number of queries  may 

    make to the oracle.  Thus, 

1 1
   Pr PrivK ( ) 1   poly( ) 2  negl( ).

2 2

n

n

A

n

n A

n n n


     
 
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key

key

  The secret key here is  .  Q:  What's its length?

  Suppose we label the elements/functions in Func  with strings

     {0,1} .   What's the key length ?

  How many elements/functions are t

n

f

k









2

here in Func ?   

      View each function as a table of 2  strings of length .

      There are 2 choices (0 or 1) for each of the 2  bits.

      So, there are  different functions.  I.e., Fun2
n

n

n

n

n

n

n





key 2

2

2 which is infeas

c .

  Thus,  log 2 ible.,  

2

2

n

n

n

n

n

n n







  
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  Solution: 

      Choose a "small" subset of , say , such that

         and  are . 

      Then, randomly picking a func

indistinguish

tion from   (as the key) 

      

a

  wi

ble

n n

n n

n

Func Func

Func Func

Func









ll be almost as good as randomly picking a function from

        .

       If we choose  to contain no more than  elements, 

        the key length will be at most 

 

2

.

      We will describe

n

n

n

Func

n

Func

  (which is a set of functions) 

         as a single function with two parameters, called a keyed

         function.

nFunc
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( ) ( ) ( )

( )

  A  :  {0,1} {0,1} {0,1}  for all 1,

    has two inputs.  

keyed function

keyThe first one is called the  and denoted .

  Each key {0,1}  induces a single-input functi

Keyed functions

a n b n c n

a n

F n

k

k





  



( ) ( )

key in out

on: 

                 :{0,1} {0,1}

                 ( ) ( , )

   is associated with three functions, ( ),  ( ),  ( ) (often written as

    ( ),  ( ),  ( )) which indicate the leng

b n c n

k

k

F

F x F k x

F a n b n c n

l n l n l n







 

key in out

ths of , , and ( ). 

   is  if ( ) ( ) ( ) .

  If  is length-preserving,  induces a set of functions for each :

   :{0,1}

Q:  In general, wh

{0,1}  |  {0,1}

 

length-pres ng

a

ervi

 

k

n n n

k

k x F x

F l n l n l n n

F F n

F k

 







 

t set of functions does  induce?F
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  A  :  {0,1} {0,1} {0,1}  

    has two inputs.  The first one

 

keyed length-preser

 is called the 

ving function

key and denoted .

  Each key {0,1}  induces a single-

Keyed Length-Preserving functions

n n n

n

F

k

k





 

 

input function: 

                 :{0,1} {0,1}

                 ( ) ( , )

  That is,  induces a set of functions for each :

   :{0,1} {0,1}  |  {0,1}

n n

k

k

n n n

k

F

F x F k x

F n

F k 






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  Let  be a keyed  function.

  Recall Func  the set of all functions  :{0,1} {0,1} .

length-preserving

pseudorandom functi   is a  if the two ensembles of on sets 

           

Pseudorandom functions

n n

n

F

f

F







 

    

( )

       | {0,1}  and Func

    are polynomially indistinguishable, i.e., if for every PPT

    distinguisher , it holds:

          Pr (1 ) 1:  {0,1}

                                  

| k

n

k n
n

n n

u

F

n
F k

D

D k








   
( ) Pr (1 ) 1:  Func   negl( )|f n

u nD f n     
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key outin

outin

( ) ( )( )

( )( )

  Let :  {0,1} {0,1} {0,1}  be a keyed function.

  Define Func  the set of all functions  :{0,1} {0,1} .

   pseudorandom functis a  ion

General pseudorandom functions

l n l nl n

l nl n
n

F

f

F

 











    key

( )

( )

if the two ensembles of sets 

                  | {0,1}  and Func

    are polynomially indistinguishable, i.e., if for every PPT

    distinguisher , it holds:

          Pr (1 ) 1:  | k

l n
nk

nn

F n

F k

D

D k






 key

( )

( )
{0,1}

                                   Pr (1 ) 1:  Func   negl( )|

l n

n
nu

f

u

D f n

 
 

     
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   

  Suppose   ( , ) .

  Then,       ( ) .       

  Is  a pseudorandom function?

  For any  and , ( ) ( ) 1 .  

  Based on this, we design

Example keyed length-preserving function

k

n

k k

F k x k x

F x k x

F

k x F x F x k x k x

 

 

   











 

 a distinguisher  as follows.   

    Given a function  (as an oracle),  asks the oracle to

    compute ( ) and ( ) for some {0,1} , say 0 .

    If ( ) ( ) 1 ,  returns 1, else returns 0.   We

n n

n

D

h D

h x h x x x

h x h x D

 

 

( )

( )

 have

   Pr (1 ) 1:  {0,1} 1

   Pr (1 ) 1:  Func 2

kF n n

u

f n n

u n

D k

D f



 

    

    
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 

( )

( )

2

2

2

Pr (1 ) 1:  Func

Pr   is picked Pr (1 ) 1

1
Pr ( ) ( ) 1

2

1 2

22

1

2

n

n

n

f n

u n

f n

f

n

n
f

n

nn

n

D f

f D

f x f x





   

    

     

 






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( ) ( )

  A function  :  is called a permutation if it is

    bijective (one-to-one and onto).

  We are interested in permutations  :{0,1} {0,1} ,

    especially with ( ) .

Permutations

l n l n

f X X

f

l n n

 

 


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  A keyed permutation is a keyed function  for which

    each  is a permutation.

  Perm , the set of all permutations  :{0,1} {0,1} .

  A length-preserving keyed permutat

pPseudorando ermutatio nsm

k

n n

n

F

F

f









( )

( )

ion  is a 

 if for every PPT  distinguisher , it holds:

          Pr (1 ) 1:  {0,1}

                                   Pr (1 ) 1:  Perm   n

pseudorandom 

    pe

egl( )

 

rmutation

|

|

kF n n

u

f n

u n

F

D

D k

D f n





   

    





  A pseudorandom permutation is also a pseudorandom

    function (assuming 

Theore

)

m:

( ) .l n n



68

  Let  be a pseudorandom function.  Construct an encryption

    scheme  for messages of length  as follows.

  :   on input 1 , output a key {0

CPA-secure encryption using pseudorandom functions

n

u

F

n

Gen k 







 

,1} .

  :   on input a key {0,1}  and a message {0,1} , 

    choose uniformly a string {0,1}  and output the ciphertext

    : ,  ( ) .

  :   on input a key {0,1}  and a ciphertext ,

n

n n

n

u

k

n

Enc k m

r

c r F r m

Dec k c r





 



 

  ,  output

    the plaintext message : ( ) .k

s

m F r s 
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kF
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 

   The encryption scheme  is CPA-secure.

    

  In scheme , a funct    

    

Theorem:

Proof (basic idea).

ion   is used as a key.

  In scheme ,  a function : {0,1}  is used as a key.

     

n

n

k k

f Func

F F k



 





 



 

cpa cpa

, , 

 Since  and : {0,1}  are indistinguishable, it can be

        shown  that

              Pr PrivK ( ) 1   P

    

  

by reduction

r PrivK ( ) 1  negl( )

  We alread

           

y know

 

n

n k

A A

Func F k

n n n 



        

cpa

, 

cpa

, 

1
Pr PrivK ( ) 1   negl( ).

2

1
  Thus,   Pr PrivK ( ) 1   neg  l . ( ) 

2

A

A

n n

n n





   
 

    
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1

  Since  is also a pseudorandom function, we may encrypt

    a message {0,1}  as before:

     : ,  ,  where {0,1} .     //CPA-secure//

  If 

   

( )

 ))

 

1 (

peIf  is a pseudorando rmu nm tatio

n

n

u

k

kF r

F

m

c r r

F

m

m

F







 





is efficiently computable, we may also encrypt  as

    : ( )                //deterministic,

( )

 so not CPA-secure// 

    : ,  ,  where {0,1} .    //CPA-secure//

           

    2)

    3

Q:  

)

How 

k

n

k u

m

F r

c F

r m

m

c r



 

to decrypt a ciphertext ,  ?

                 (Assume that  is efficiently computable.)k

c r s

F





Modes of Operations

K&L: Section 3.6.2
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*

  Now let's see how to encrypt a message of arbitrary length

    using a pseudorandom function or permutation. 

  Encryption algorithm:  On input {0,1}  and key , 

      Pa

Encrypting long messages 

m k





 1 2 3    

d the message so that its length is a multiple of  (block size).

  Divide the padded message  i nto blocks, say 

                    , , , ,

  Individually enc

   

    rypt each block :

  

t

i

n

m

m m m m m

m



1 1 2 2   

                          {0,1}    and   : ( )

  The final ciphertext is

                            : ( ,  ), ( ,  ), , ( ,  )

  The ciphertext is twice as lo

    

ng as the message.

n

i u i k i i

t t

r c F r m

c r c r c r c

  



 Ineffi  cient!
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1 2

  More efficient ways to do it are traditionaly called modes of

    operation (of block ciphers).

   generate a single random string  Mai {0,1}  and

    derive , 

n i

, ,

dea:

 

Modes of operation

n

u

t

IV

r r r







1 2  

 from  .   ( :   Initialization Vector)

  The ciphertext will be of the form

                           

  Important modes of operation: 

  Counter mode (CTR):    

 ,  ,  , ,

     

 

 

 

  

i

tc I

IV IV

r IV

V c

i

c c











 

 

 

1 1

0 1

0 1

  Output feedback mode OFB :     ,   ( )

  Cipher feedback mode CFB :     ,    :  

  Cipher block chaining mode CBC :   

 

    

     ,      :

i k i

i i

i i

r IV r F r

c IV r c

c IV r c







 

 

 
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 

1 2

1 2 3    

  Idea:  The strings , , ,  are  for 1 .

  Thus, to encrypt a message , , , ,  with key 

      Choose a random string {0,1} .

      Encrypt  as

    

Counter mode (CTR)

t i

t

n

u

r r r r IV i i t

m m m m m k

IV

m

   







 

1 2                  : ,  ,  , ,  , where : ( )

                                                                       :  

  St Blocks can be encrypted or decrypted  re in parng ath: llel 

 

t i k i i

i

c IV c c c c F r m

r IV i



  

 

   or in a “random access” fashion.



Counter Mode (CTR)
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1 2 3                              r r r
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 

1 2 1 1

1 2 3    

  Idea:  The strings , , ,  are  and  ( )

  Thus, to encrypt a message , , , ,  with key 

      Choose a random string {0,1} .

      Enc

Output feedback mode (OFB)

t i k i

t

n

u

r r r r IV r F r

m m m m m k

IV











 

1 2

1 1

 rypt  as   : ,  ,  , ,  

        where     : ( )

                      : ,   and  :  ( )  for  2

t

i k i i

i k i

m c IV c c c

c F r m

r IV r F r i t



 

   



Output feedback
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1 2 3                                 r r r
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 

1 2

0 1

1 3

1

2

  Idea:  The strings , , ,  are chosen to be 

    where  and  is the previous cipher block.

  Thus, the ciphertext of  ,  ,  ,  ,   is

   

 :  ,

   

Cipher feedback mode (CFB)

t i i

i

t

r r r

c IV c

m m m m

c

m

r 





 



 0 1 2

0

1

 :  ,  ,  ,  ,  

       where   :  

                     for  1 .: ( )i k i i

tc c c c c

c IV

F m i tc c  





 



How is Cipher Feedback (CFB) 

different from OFB?

80

1 2 3                                 r r r
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 

1

1 2

 Assume  is a pseudorandom permutation and 

   is efficiently computable.

 Each block  is encrypted as .

 The strings , , ,  are chosen to be 

Cipher block chaining mode (CBC)

k

i i k i

t i

i

F F

m c F r m

r r rr



 



 

 

0 1

1

1

1

2 3

0 2

0

 for  1 ,

    with ,  and  being the previous cipher block.

 Thus, the ciphertext of  ,  ,  ,  ,   is

       :  ,  ,  ,  ,  

       where   :  

                    : (

i

t

t

i

i

k

i t

c IV c

m m m m m

c c c c c

c IV

c

c

F





 











 1 ) for  1 .i ic m i t   



Cipher block chaining (CBC)
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Chained CBC

83

1 2 3 4 5

  Used in SSL 3.0 and TLS 1.0, but is .

    Message 1:  ( , , )          M

not 

essa

CPA

ge 

-se

2:

cure

  ( , )m m m m m



IV’

CBC



Chained CBC
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1 2 3 4 5

  Used in SSL 3.0 and TLS 1.0, but is .

    Message 1:  ( , , )          M

not 

essa

CPA

ge 

-se

2:

cure

  ( , )m m m m m


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 

 

 

1 2 3

1 2 3 1 1

1 2 3

  Let adversary  chooses two messages , , , 

    , ,  such that .

  Let ,  , ,  be the challenge ciphertext.

   knows the oracle is going to

Insecurity of Chained CBC

A M m m m

M m m m m m

C IV c c c

A



  







 3

4 1 3 4

4

1 4

 use  in the next encryption. 

    So,  prepares  such that ,  and asks

    the oracle to encrypt it.  Suppose  receives  from the oracle.

  Depending on whether ,   knows whether

c

A m IV m c m

A c

c c A

  

  is the 

    encryption of  or . 

C

M M 
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1 2 3 1 2 3

1 2 3

41 3

Is ( ,  ,  ,  ) the encryption of ( ,  ,  )

                                               

                                 

          or ( ,  

                      

  

,  )?

C IV c

IV

c c M m m m

c

M m m m

m m 







 

1 4

        

                                                         ?c c

1 1 or ?m m
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 

 

1 2 3

  Use a pseudorandom permutation .

  ,  ,  ,  ,  

  Each block  is encrypted as .

  The resulting scheme is deterministic and  CPA secure.

  Used o

n t

n

o

l

Electronic codebook mode (ECB)

t

i i k i

F

m m m m m

m c F m















y for sending a short message (in a single block).



Electronic Code Book (ECB)
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  If  is a pseudorandom function or permutation, then

    OFB, CFB, CTR are CPA-secure.

  If  is a pseudor pandom , then 

   

ermutati

 is CPA-secu

on

CBC re. 

Security of CBC, OFB, CFB, CTR

F

F







Chosen-Ciphertext Attacks

K&L Section 3.7
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cca

,

1. A key (1 ) is generated.

2. The adversary is given input 1  and oracle access to ( 

    . 

3. The adversary ch

( )

ooses two message 

) and

( )

CCA indistinguishability experiment PrivK A

n

k

k

n

n

En

k

c

G

Dec

en

m









0 1 0 1,   with ;  and

    is given a challenge ciphertext ( ),  where {0,1}.

4. The adversary ( ) ancontinues to have oracle access t

not allowed to request t

o ,

    but is he de

( )

cr

d 

yp

k k

k b u

m m m

c Enc m b

Enc Dec 



 

 

5. The adversary finally outputs a bit .

6. The output of the experiment  is 1 iff .

Note:  The CCA defined here has the capabilities of both

tio

  CPA and 

"pure CCA

n of itself.

".

b

b b

c




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   indistinguishable encryptions under a chosen-ciphertext attack,

   

 A private-key encryption scheme  has

 

  CCA-secure, or is if for all PPT adve

Definiti

rsaries ,  there is a negli

   on:

CCA-security

A



cca

, 

gible

    function ( ) such that (for all )

1
         Pr PrivK ( ) 1   negl( )

2

    where the probability is taken over the randomness used by 

    as well as the randomness used in the ex

A

negl n n

n n

A


    

( ), ( )

0 1cca

, 

0 1

periment. 

(1 , , , ( )) :  
 Pr PrivK ( ) 1 Pr

{0,1},  (1 ),  , )
 

(1

k kEnc Dec n

k b

A n n

u

A m m Enc m b
n

b k Gen m m A

 



 
     

    


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LR-cpa

, 

LR-cca

,  :  same as PrivK ( ) excExperiment PrivK ( )

Definition

ept ... (what?)

   A private-key encrypt

   ind

ion scheme  ha

multipleistinguishable 

 

s

 

:

 

 

CCA-security for multiple encryptions

A An n 



or is if for all PPT adversa

encryptions under a chosen-

ries ,  

    there is a neg

ciphertext attack,

     CCA-secure for  

ligible function ( ) suc

multip

h that

encryption

 (for all 

s,

)

         Pr P

l  

ri

e A

negl n n

LR-cca

, 

1
vK ( ) 1   negl( )

2

    where the probability is taken over the randomness used by 

    as well as the randomness used in the experiment. 

   For any privatTh e-eore key encrym ptio: c n s he

A n n

A


  



 

me,  

            CCA-security    CCA-security for multiple encryptions.
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 The encryption schemes we have seen so far are .

If a ciphertext manipulated in a controlled ( ) can be , 

    then the encryption scheme is not CC

not CCA-secure

A-secure

 w

 

 

  ay

 

.

CCA insecurity

kc Enc m





  

0 1

Example:  consider the scheme    ( ) ,  ( ) . 

      The adversary chooses any two messages ,  of equal length.

    Let the challenge ciphertext be  ,   where

         :  ( ) ,  wit

 

h

 

 

k k

k b

Enc m r F r m

m m

r c

c F r m

 

   {0,1}.

    The adversary modifies ,   to ,  ,   ( ) , which 

        is a legitimate ciphertext of .

      Requesting the oracle to decrypt ,  ,  the adversary will g

 

et  

        an

 

d hen

k b

b

b

b

r c r c r f r m

m

r c m



 

ce know the value of .b
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 We will see that: 

    CPA-secure encryption secure MAC

    CCA-secure encryption

 

Constructing a CCA-secure encryption scheme









Padding-Oracle Attack:

a concrete example of (partial) 

chosen-ciphertext attacks 

K&L Section 3.7.2
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 We will attack the CBC-mode encryption scheme that uses 

    PKCS#5 padding.

 :  block length (in bytes).

 :  pad length (in byt 1 255es).      

 PKCS#5 padding   

      The val

 

 

o

 

 :

ue 

The Setting

L

b b L









  

f  (as an 8-bit binary) is repeated  times. 

      Examples:   0x01, 0x0202, 0x030303, 0x04040404.

  refers to the (w/o  

 

padding).

 

Message original message 

Encod  refers to the ed data padded message

b b





 The encoded data is encrypted using CBC-mode encryp

.

. tion
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 On receiving a ciphertext, the receiver decrypts it to recover the

    encoded data and 

 

checks if the padding is correct.

If , the receiver typically sends back anot cor  "ba

 

 rec  pt d

A Padding Oracle



 adding"

    error message (e.g., in Java, javax.crypto.BadPaddingException).

 Such receivers provide the adversary with a 

    which may 

padding oracle

partial decryption 

 

obe viewed racle as a .

         



                        ciphertext
    Padding Oracle

error (if padding incorrect)

 Using such a padding oracle, the adversary can recover the

    original m ge.

 

essa






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1 2

1 2

2 2 1

 Suppose the encoded data is ,  , unknown to the adversary;

    and the ciphertext is ,  ,  ,  known to the adversary.

 Recall:  ( ) 

 

   a

Modify the encoded data in a controlled fashion

k

m m

IV c c

c F m c 



1

2 2 1

1

2 2 1

1 2 1 2

1 2 1 2

nd so    ( ) .

 Thus,  ( ) .  That is,

   ,  ,  ,  
          

,  ,  ,  

 By modifying the ciphertext, the adversary can modify the 

    en

 

coded da

 

k

k

Dec

Dec

m F c c

m F c c

IV c c m m

IV c c m m





 

 









 











ta in a controlled fashion and then ask the oracle

    if the padding (of the modified encoded data) is correct.



Cipher block chaining (CBC)
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


1

=
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2

 Example:  modifying the 5th byte will result in a padding error.

       0x03 0x03  =   0x33 0x22 0x11 0x44

 In general, to find the pad length, the adversary runs:

      

0

 

 

 

x03

Find out the pad length 

m

b





1

    1   

             modify the th byte of 

             send the resulting ciphertext to the receiver/oracle

             if receiving a padding error then return : ( 1)

i L

i c

b L i



  

for to do
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2

2

Having known 3, how to recover the byte ?

         =               

         =               0x0 0x0 0x0

      Try (how?) every s

0x03

 

0x03 0x    

t

 

4

r

0

 

3

4 4

Recover the message byte by byte

b

m x y z

m x

w

w

w iy z









  

8

38 8 8

1 1

ing {0,1}  until there is  

        for which ,             0x04    0x04

      How: modify  to ,  with 0 0 0 0x03 0x04

    

 padding e

    and pr

rror

esent the resulting ciphe

o

rtex

,n

i i

i w i w

i

i

c ic



    

   

1 2

1 2

t ,  ,   to the

        oracle, which after decryption will see ,  .

        

iIV c c

m m



 
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2

2

8

 

Having recovered , how to recover ?

         =       0x03 0x03 0x0         

         =           0x0 0x0 0x0 0x0

      Try

 

    

5

 every string {0,1}  

5

 

5

3

u

5

Recover the message byte by byte

z

z

w

m x y

m

w

x y z i

i









   

38 8

1 1

1 2

ntil no padding error, then

                      0x05    0x05

      How: modify  to ,  with 0 0 0x05 0x03 0x05

        and present the resulting ciphertext ,  ,   to the

   

i i

i

z i z i

c c w

IV c c

i

    

    



1 2     oracle, which after decryption will see ,  .

        

m m 


