Symmetric-Key Encryption

CSE 5351: Introduction to Cryptography
Reading assignment:

 Chapter 3

» Read sections 3.1-3.2 first (skipping 3.2.2)

Negligible functions

A nonegative function f : N — R is said to be negligible
If for every positive polynomial P(n), there Is an integer
n, such that

f(n)< PL) forall n>n, (i.e., for sufficiently large n).
n

Examples: 27", 2=V n7l9an are negligible functions.

Negligible functions approach zero faster than the reciprocal of
every polynomial.
We write negl(n) to denote an unspecified negligible function.

Properties of negligible functions

If negl, (n) and negl, (n) are negligible functions, then
negl, (n) + negl, (n) is negligible.

If negl(n) is a negligible function and p(n) a polynomial, then
p(n)-negl(n) is negligible.

Examples: 27" + 27" and n'®n~"" are negligible.

Relaxing the security requirement

In perfect indistinguishability (perfect secrecy),
the adversary has

o unlimited computing power,

e success rate <1/2;

« also, message length is hidden.

Now we relax the notion of perfect indistinguishability by
« limiting adversaries to having poly(n) computing power,
. allowing the success rate to be <1/2 -+ negl(n),

« not hiding message length.

Security Parameter

The n In the previous slide Is called a security
parameter, which indicates the key length.

We will associate an encryption scheme IT with a
secureity parameter n, and would like IT to be secure

In the sense that any adversary with poly(n) computing
power can break IT with at most negl(n) probability.

PPT Algorithms

Probabilistic polynomial-time algorithms

Polynomial-time : the running time is polynomial in input length.
Input length is the number of bits of the input.

What is the length of n in binary, and what is the length of 1"?
What is the difference between these two statements:

« A(n) iIs a PPT algorithm.

« A(1") is a PPT algorithm.

Private-key encryption scheme w. security parameter n

A tuple of polynomial-time algorithms: I'T = (Gen, Enc, Dec)
Key generation algorithm Gen: On input 1", outputs a

key k €{0,1}". We write k <~ Gen(1"). (n:security parameter.)

Encryption algorithm Enc: On input a key k and a message

m e{0,1} , outputs a ciphertext c. We write ¢ <- Enc, (m).

Decryption algorithm Dec: On input a key k and a ciphertext c,

Dec outputs a message m or an error symbol L.

We write m := Dec, (c).

Correctness requirement: for every k «<— Gen(1") and m €{0,1}
Dec, (Enc, (m))=m.

Gen, Enc are probabilistic. Dec, deterministic.

If message space M ={0,1}'""), then IT = (Gen, Enc, Dec) is
said to be a fixed-length private-key encryption scheme for
messages of length Z(n).

If Gen(1") simply outputs k <, {0,1}", we omit Gen and simply
denote the scheme by (Enc,Dec). This is almost always the case.

Ciphertext Indistinguishability Experiment PrivKs (n)

ATl

Adversary: PPT eavesdropper with a single ciphertext.
(Gen, Enc, Dec) : an encryption scheme with security parameter n.
Imagine a game played by Bob and an adversary A (Eve):

. Eve, given input 1", outputs a pair of messages m,, m,
with |m;|=|m,| (i.e., having the same length).

- Bob chooses a key k «— Gen(1") and a bit b «— {0,1};
computes ¢ «<— E, (m,); and gives c to Eve.

« Eve outputs a bit b’, trying to tell whether c is an
encryption of m, or m,.

- The output, PrivkK}}, (n), of the experiment is 1 iff b =b’
(i.e., Eve succeeds.)

Ciphertext Indistinguishability against an eavesdropper

Definition: A private-key encryption scheme has
Indistinguishable encryptions against an eavesdropper (or Is
EAV-secure) if for all probabilistic polynomial-time adversaries A,
there is a negligible function negl(n) such that (for all n)

Pr| Privk", (n) =1] < %Jrnegl(n)

where the probability is taken over the randomness used by A,
the randomness used by Bob to choose the key and the bit b,
as well as the randomness used by Enc.

A(1",m,,m;, Enc, (m,))=b:
b, {01}, k < Gen(1"), my,m, < A(1")

10

Pr| Privk§", (n) =1|="Pr

An equivalent formulation

For b=0 or 1 (fixed), let PrivK}"(n,b) denote the previous
experiment with the fixed b used.

Let output (Privk%"_ (n,b)) denote the adversary's output.
A TI

A(1",my,m,, Enc,(m,))=1:

Pr| output (Privks", (n,b)) =1]=Pr k < Gen(l"), m,,m, « A(L")
| ! 01 _

Theorem: A private-key encryption scheme is EAV-secure
If and only if for all PPT adversaries A, there is a negligible
function negl(n) such that

oo, 00) 1] - e,)]

< negl(n).
11

That

P{

IS,
A(l” ,m,,m,, Enc, (mo)) ~1:

k < Gen(1"), m,,m « A(1"

< negl(n)

I

A(l” .m,,m,, Enc, (ml)) ~1:
k < Gen(1"), m,,m « A(1")

12

Adversaries cannot learn any bit of the plaintext

Let m' denote the ith bit of m.

If an encryption scheme is EAV-secure, then from a ciphertext
¢ < Enc,(m), it is infeasible for the adversary to recover m'.

Theorem: If a fixed-length private-key encryption scheme with
M ={0,13"" is EAV-secure, then for all PPT adversaries A and
any i e{l,...,£(n)}, it holds:

Pr[A(l”, Enc, (m))=m':k <, {0,13", m«, {O,l}‘(”)] < %+ negl(n).

13

Secure Encryption Schemes

Secure: EAV-secure, CPA-secure, or CCA-secure.
Secure private-key encryption schemes may be constructed from:

« Pseudorandom generators
« Pseudorandom functions
« Pseudorandom permutations.

14

Pseudorandom Generators and
Stream Ciphers

Encryption schemes using pseudorandom
generators

K&L: Section 3.3

15

Motivation

Vernam's one-time pad scheme Is perfectly secure against
single-ciphertext eavesdropper.
Drawback: it requires a random key as long as the message.

Solution: use a short key as seed to generate a "pseudorandom"
key that Is as long as needed.

This is the basic idea of stream ciphers.

16

Stream ciphers

The term "stream cipher" may refer to the entire encryption scheme

or just the pseudorandom generator.

Key
K

|

Pseudorandom byte
generator
(key stream generator)

k

Plaintext +
byte stream

M ENCRYPTION

Key
K

l

Pseudorandom byte
generator
(key stream generator)

k
Ciphertext Plaintext
byte stream + %yte stream
C DECRYPTION M

17

What Is a pseudorandom generator?

Informally, a pseudorandom generator is an algorithm G that given

a (short) truly random string s, outputs a "random-like"
(i.e.,pseudorandom) string longer than s.

Informally, a string r is "random-like" if it is hard to tell

whether or not r is generated by a truly-random generator.

Loosely speaking, two sets A ,B. < {0,1}" are said to be polynomially
Indistinguishable if for every polynomial distinguisher D,

| Pr[D(r)=1: re, A]
_ pr[D(r):l: <, Bn] |£ negl(n)

18

In the above, we were actually talking about the indistinguishability
neN and (Bn)
L and (B,) are

neN

between two ensembles (sequences) of sets: (A,) -

Definition: Two ensembles of sets (A,)

Ne

polynomially indistinguishable if for every polynomial-time
distinguisher D, it holds that

| Pr[D(r)=1: r <, A]
— Pr[D(r)=1: r <, B,] | < negl(n)

Which of the following are polynomially indistinguishable ?
- A ={0.1", B, ={0,.13" - {0"|

+ A ={0.1", B, ={s{0,1}": s>2'° asabinary integer}
. A ={03", B, =0/ {0,

19

A, ={0,13" and B, ={0,1}" - {0"} are polynomially indistinguishable.
Pr(D(r)=1: r«, A]& > Pr[r]-Pr[D(r) =1]
reA,
= iﬂz Pr[D(r) =1]
2 reA,
1] 1
_ ?Pr[D(O):1}?;& Pr[D(r) =1]

Pr(D(r)=1: r «, B,]£ > Pr[r]-Pr[D(r) =1]

1
2”—1;8” Pr[D(r) =1]

| Pr[D(r)=1: r«, A] — Pr[D(r)=1: r«, B,] | < negl(n)

20

Definition of pseudorandom generator
Let /() be a polynomial such that /(n) > n for all n > 0.

Let G be a deterministic polynomial-time algorithm that, for any
input string s €{0,1}", outputs a string G(s) € {0,1}'™.

G Is said to be a pseudorandom generator with expansion factor /()
If for every polynomial-time distinguisher D,

| Pr{D(G(s) =1: s ¢, {0,13"]
— Pr|D(r)=1: r <, {0, | ‘ < negl(n)

That is, the two ensembles (A,) and (B,) _ , are polynomially

neN

indistinguishable, where A ={G(s): s €{0,1}"} and B, = {0,"".

21

Example: insecure pseudorandom generator
Let G(s)=s||(s,®---®Ds,) fors=s,...5, €{0,1}".
Expansion factor [(n) =n+1.

G Is not a pseudorandom generator:
1 fr®---@r =r
0 otherwise

For r €{0,1}"", let D(r) :{

+ Pr[D(G(s)) =1: s «, {0.13" | =1
+ Pr[D(r)=1: r «,{0,.3"" | =1/2

Difference between the two probabilities is not negligible.

22

Remarks

A string r is said to be a random string iIf it is generated
by a true random generator (i.e., r <, {0,1}', where ¢ =|r|).

A string r Is said to be a pseudorandom string if it is generated
by a pseudorandom generator.

What if the distinguisher D has unlimited (or exponential) time?

1 ifr=G(s) for somese{0,1}"

. Givenr e{0,1}™, let D(r) = _
O otherwise

+ Pr[D(G(s)) =1: s «, {0.13" | =1

+ Pr[D(r)=1: r«, {0,3'" |=2"/2"™ =1/2""

- Difference between the two probabilities is not negligible.

23

Existence of pseudorandom generators

If one-way functions exist, then pseudorandom generators

exist.
That is, pseudorandom generators can be constructed from

one-way functions.
Chapter 7 of the K&L book shows how to construct pseudorandom

generators from one-way permutations.
True pseudorandom generators are slow for applications.
In practice, algorithms such as RC4 are used.

24

Existence of pseudorandom generators (basic idea)

Let f :{0,1}" — {0,1}" be a one-way function.

Let b:{0,1}" —{0,1} be a hard-core predicate of f.
« A boolean function defined on the domain of f.
« Easy to compute b(x) from x.

« But hard to compute b(x) from f (x).

Given seed x, let x, = Xx.

Starting from x,, apply f repeatedly:

f \ f \ f N ... f \
XO /7 Xl /7 Xz /7 /7 Xl(n)—l

Let G(X) = (b(%), b(%), b(%), -+ b(X0y4)).

G Is a pseudorandom generator with expansion factor I(n).

25

Example: Blum-Blum-Shub pseudorandom generator

Let n= pq for two large primes p, g.

Let f (X) = x*> mod n. /lone-way function//

Let b(x) = the least significant bit of x //hard-core predicate//

f \ f \ f N oo f \
XO /7 Xl /7 X2 /7 / Xl(n)—l

Let G(x) = (b(%,), b(%), b(%,), - b X0 4)).

G Is a pseudorandom generator with expansion factor 1(n).

26

Example: Blum-Blum-Shub pseudorandom generator
Suppose n = pg =29 x31=899.
Suppose x, =100.
Then we have the sequence
100, 111, 634, 103, 720, 576, 45, 227, 286, 886, 169,
692, 596, 111, 634, 103, 720, ...
The generated bits are 01010011001001010...

27

Encryption schemes based on pseudorandom generators

From a pseudorandom generator with expansion factor £(n), we
can easily construct an EAV-secure £(n)-bit encryption scheme.

G: a pseudorandom generator with expansion factor Z(n).

Key generation: on input 1", outputs a key k <, {0,1}

Encryption: on input a key k € {0,1}" and a message m € {0,1}""
outputs the ciphertext ¢c:=m® G(k).

(n)

Decryption: on input a key k € {0,1}" and a ciphertext ¢ € {0,1}
outputs the m:=c® G(k).
Denote this scheme by I1.

28

Security

Theorem. The scheme IT constructed above is EAV-secure
(i.e. has indistinguishable encryptions against eavesdroppers).

Intuition:

e |f encrypting with a truely random string r :
C,=m,Dr

} perfectly indistinguishable
Cc,=mdr

e If a pseudorandom string G(s) Is used instead:
C, =M, ®G(s) o
polynomially indistinguishable
c,=m ®G(s)

29

Proof sketch

e By reduction. We will show:

Distinguishing between Breaking encryption scheme I1
random strings r and <, | (distinguishing between
pseudorandom strings G(s) ciphertexts c, and c,)

e Notation. A<, B: Areduces to B in polynomial time.

e Roughly meaning that we can solve A using an algorithm for B as a
subroutine. Hardness of A < hardness of B.

e Example?

30

e Let A be an arbitrary PPT adversary against encryption scheme I1.

e Construct a distinguisher D :

. D, given as input a string w e {O,l}'(”) , wants to determine
whether w Is random or pseudorandom.

\"

+ D runs Privk®® (n) to obtain a pair of messages m;, m, {0,1} " .

D chooses b <, {0,1}, setsc:=m, @ w, gives c to A, and
obtains b’ from A.

« D outputs 1 if b=Db’, and outputs 0 otherwise.

31

Distinguisher D

alsS <———

. eav
Run Privk,™,

b «,{0,1}
C=m dw

ans:=(b=0")

1I’l

Mg, My

br

adversary A
against
encryption
scheme

I1

32

o PrD(wW)=1: w«, {0, | = Pr[PriijfVH,, :1] = 12
where IT is Vernan's one-time pad.

e Pr|D(W)=1: w:=G(s), s<,{0,13" | = Pr|Privk}", =1]

Pri D(w) =1: w«, {0,3'" |
— Pr|D(w)=1: wi=G(s), S <, {0,1}”]‘ < negl(n) (Why?)
e So, ‘ 1/2 — Pr| Privky, =1] | < negl(n)

= Pr| Privky", =1| < 1/2+negl(n)

— IT11s EAV-secure

33

Encrypting multiple messages with a single key

Stream ciphers require a new key for each message.
In practice, Alice and Bob wish to share a permanent key k and
use it to encrypt multiple messages. One possible strategy:
 For each message m, generate a random string r and use
s=Kk || r as a seed to the pseudorandom generator G.
+ Include r in the ciphertext, i.e., ¢ := Enc, (m) =(r, m®G(k||r)).
o It is probabilistic!
Unfortunately, the resulting scheme is not necessarily EAV-secure.

It requires G to be more than a pseudorandom generator for the
scheme to be EAV-secure.

34

Using stream ciphers in a session

At the beginning of a session, Alice and Bob agree on two keys
k, and k, (called session keys).

Alice and Bob each run G(k,) and G(k,) to get two (long enough)
pseudorandom strings, say PS, and PS,.

Alice encrypts her sequence of messeges (ml, m,, m,,) as

(¢ €y Gy o) i=((My, My, My,)@ PS,).
Bob uses PS, for encryption in a similar way.

In practice, a stream cipher is designed to generate a random string
of desired length bit/byte by bit/byte byte on demand.

35

The RC4 Stream Cipher (K&L: Section 6.1.4)

Most popular stream cipher
Simple and fast
Used In many standards

Actually not a cipher, but a (practical, approximate)

pseudorandom generator. Not truely pseudorandom.
Designed by Ron Rivest in 1987 for RSA Security,
and kept as a trade secret until leaked out in 1994.

36

RC4

e Two vectors of bytes:

— S[0], S[1], S[2], ..., S[255]

— T[0], T[4, T[2], ..., T[255]
e |nput Key (seed) K: variable length, 1 to 256 bytes
e Initialization:

1. S[i]«1, for0<1<255

2. T[0..255]« K, K, ... (until filled up)

37

RC4: Initial Permutation

e [nitial Permutation of S:

] <0

for 1 «0to2550¢C
] < () + S

Swa

e Idea: swap

0 S[i], S[]

ning bytes ¢

O

+ T[i]) mod 256

ependently of the input key.

o After this step, the input key will not be used.

38

RC4: Key StreamGeneration

o Key stream generation:

,] «< O

while (true)
| « (1 + 1) mod 256
] < () + S[i]) mod 256
Swap S[i], S[]]
t « (S[i] + S[j]) mod 256
output S[t]

e |dea: systematically keep swapping and producing
output bytes

39

Security of RC4

RC4 is not a truly pseudorandom generator.

The key stream generated by RC4 Is biased.
— The second byte is biased toward zero with high probability.

— The first few bytes are strongly non-random and leak
Information about the input key.

Defense: discard the initial n bytes of the keystream.
— Called “RC4-drop[n-bytes]”.
— Recommended values for n = 256, 768, or 3072 bytes.

Efforts are under way (e.g. the eSTREAM project) to
develop more secure stream ciphers.

40

The Use of RC4 in WEP

- WEP is an RC4-based protocol for encrypting data transmitted
over an IEEE 802.11 wireless LAN.

« WEP requires each packet to be encrypted with a separate RC4
key.

» The RC4 key for each packet is a concatenation of a 40-bit or
104-bit long-term key and a random 24-bit R.

RC4 key:. | Long-term key (40 or 104 bits) R (24)

802.11 | Header R Message CRC
Frame: t /

|

encrypted

41

WEP Is not secure

- Mainly because of its way of constructing the key
 Can be cracked in a minute
 http://eprint.iacr.org/2007/120.pdf

42

http://eprint.iacr.org/2007/120.pdf

Stronger Security Notions

K&L: Section 3.4

43

Different levels of security

EAV-security (against eavedroppers, ciphertext-only-attacks)
« 0ONe encryption
« multiple encryptions

CPA-security (against chosen-plaintext attacks)
« 0ONe encryption
« multiple encryptions

CCA-security (against chosen-ciphertext attacks)
e 0ONe encryption
« multiple encryptions

a4

Multiple-ciphertext indist. experiment PrivkKy (n)

Adversary: eavesdropper with multiple ciphertexts

A game between Bob and an adversary A:

The adversary, given input 1", selects two lists of messages
M, =(m;, m, .., my) and M, =(m;, m?, ..., m;)

such that |mp|=m;| for all i.

« Bob chooses a key k «— Gen(1") and a bit b < {0,1};
computes ¢' < Enc, (m;) for all i, and gives the challenge

ciphertext list C = (c*, c?, ..., ¢') to the adversary.
« The adversary outputs a bit b’".
 The output of the experiment i1s1 iffb="D".

45

Multiple-ciphertext indist. against an eavesdropper

Definition: A private-key encryption scheme IT has
Indistinguishable multiple encryptions against an eavesdropper

If for all PPT adversaries A, there is a negligible function negl(n)
such that (for all n)

Pr{ Privk ' (n) =1 < %+neg|(n)

where the probability is taken over the randomness used by A,
by Bob, by Gen, and by Enc.
A1",M,,M ,Enc (M,))=Db:

Pr| Privk 'l (n) =1|=Pr
’ b<«, {01}, k < Gen(1"), M,,M; « A(1")

46

Deterministic encryption schemes
are not multiple-ciphertext indistinguishable

Theorem: If the Enc of an encryption scheme I'T = (Gen, Enc, Dec)
IS deterministic, then the scheme cannot have indistinguishable
multiple encryptions against an eavesdropper.

Proof. Suppose Enc is deterministic.

Let M, =(0", 0") and M, =(0", 1"). Let the challenge ciphertext
listbe C =(c, C,).

What can Asay ifc,=c, (orifc,#c,)?

For example, Vernam's one-time pad (for a fixed n) is
single-ciphertext indistinguishable, but not multiple-ciphertext
Indistinguishable.

47

Chosen-Plaintext Attacks (CPA)

The adversary Is capable of adaptively obtaining samples
(m;, ¢), ..., (M, c,), where m. is chosen by the adversary

and ¢, < Enc (m.) for all 1.

We model such an adversary by giving it access to an encryption
oracle Enc,(:), viewed as a "black box" that on query m returns a

ciphertext ¢ «— Enc, (m).

m —

Oracle Enc, (-
Enc,(m) <« ()

48

CPA Indistinguishability experiment PrivkKe: (n)

1. A key k <~ Gen(1") is generated.

2. The adversary is given input 1" and oracle access to Enc, (-). It may
request the oracle to encrypt messages of its choice.

3. The adversary chooses two message m,, m, with |m,|=|m,|; and
Is given a challenge ciphertext ¢ < Enc, (m,), where b «—, {0,1}.

4. The adversary continues to have oracle access to Enc, (-) and may
even request the encryptions of m, and m,.

5. The adversary finally outputs a bit b'.

6. The output of the experiment is1iffb=D".

Note: The CPA here is an adaptive CPA.

49

CPA-security

Definition: A private-key encryption scheme IT has
Indistinguishable encryptions under a chosen-plaintext attack,

or Is CPA-secure, if for all PPT adversaries A, there is a negligible
function negl(n) such that (for all n)

Pr| Privk, (n) =1] < %Jrnegl(n)

where the probability is taken over the randomness used by A
as well as the randomness used in the experiment.

AT (1" m,,m,, Enc, (m,)) =b:

Pr| Privk$® (n)=1|=Pr
PrivKEa(m =1] b, {013, k « Gen(1"), my,m, « AQL")

50

CPA-security for multiple encryptions

One approach is to model the adversary as having oracle access
to Enc, (-) and having it produce two message lists

M, =(m;, m, .., m))and M, =(m;, m?, ..., m;)

Alternatively, we use an oracle LR-Enc, (-), where k Is a key
and b «<-{0,1}. (LR-Enc, () Is denoted by LR, , (-) in the book.)

m,, m —

Oracle LR-Enc, , (*)
Enc (m,) <« ’

The adversary Is to guess the value of b.

51

The LR-oracle experiment PrivKte (n) @

ATl

A key k < Gen(1") is generated.
. A bitb <« {0,1} is chosen.

The adversary A is given input 1" and oracle access to LR-Enc, , (-).
The adversary A outputs a bit b’
The output of the experiment is1iff b=Db".

s owoN P

52

CPA-security for multiple encryptions

Definition: A private-key encryption scheme IT has

Indistinguishable multiple encryptions under a chosen-plaintext attack,
or Is CPA-secure for multiple encryptions, if for all PPT adversaries A,
there is a negligible function negl(n) such that (for all n)

Pr| Privk [(n) =1] < %+neg|(n)

where the probability is taken over the randomness used by A
as well as the randomness used in the experiment.

Theorem: For any private-key encryption scheme,
CPA-security = CPA-security for multiple encryptions.

53

Constructing CPA-Secure
Encryption Schemes

K&L: Section 3.5

54

oY

Pseudorandom
generator

XOR

55

A CPA-secure encryption scheme (inefficient)
Let Func, be the set of all functions f :{0,1}" —{0,1}".

Construct an encryption scheme IT as follows.

Key generation: uniformly choose a function f <, Func_.

To encrypt a message m €{0,1}", uniformly choose a
string r «—, {0,1}", and encrypt mas ¢ :=(r, m@® f (r)).

To decrypt a ciphertext ¢ =(r, s), compute m:=s@® f (r).

56

Theorem: The encryption scheme IT is CPA-secure.

Proof (sketch). Consider any arbitrary adversary A.

In the experiment Privk™ (n), letc =(F, m, ® f(F)) be the
challenge ciphertext. Since f (') is uniformly random, c is
Indistinguishable unless, on A's query m, the oracle happens
to return ¢, = (F, m® f (F)), in which case A will learn f (F).
This may occur with probability at most poly(n)/2", where

poly(n) Is an upper bound on the number of queries A may
make to the oracle. Thus,

- cpa 1 n 1
Pr| Privk P (n) =1] < ~+poly(n)/2" = -+ negl(n),

57

The secret key here is f. Q: What's its length?

Suppose we label the elements/functions in Func_ with strings
k e{0,}". What's the key length ¢, ?

How many elements/functions are there in Func,?

« View each function as a table of 2" strings of length n.
 There are 2 choices (0 or 1) for each of the n-2" bits.

. So, there are 2"%" different functions. l.e., |Func,|=2"7".

Thus, (., > log, N2 _ n-2", which is infeasible.

58

Solution:

Choose a "small" subset of Func_, say Func/, such that
Func, and Func’ are indistinguishable.

Then, randomly picking a function from Func, (as the key)
will be almost as good as randomly picking a function from
Func, .

If we choose Func/ to contain no more than 2" elements,
the key length will be at most n.

We will describe Func, (which is a set of functions)

as a single function with two parameters, called a keyed
function.

59

Keyed functions

A keyed function F ; {0,13*™ x{0,13*™ — {0,3°™ for all n>1,
has two inputs. The first one is called the key and denoted K.
Each key k €{0,13*" induces a single-input function:

F . {0,3*" — {0,13*"

F (x) = F(k,X)
F is associated with three functions, a(n), b(n), c(n) (often written as
e, (N), I, (N), 1, (n)) which indicate the lengths of k, x, and F_(X).
F is length-preserving if I, (n) =1 (n) =1 ,(n) =n.
If F is length-preserving, F induces a set of functions for each n:
(F {03 >{0.0" | ke{0,1"}
Q: In general, what set of functions does F induce?

60

Keyed Length-Preserving functions

A keyed length-preserving function F : {0,1}" x{0,1}" —{0,1}"
has two inputs. The first one is called the key and denoted K.
Each key k €{0,1}" induces a single-input function:

F :{0,1}" - {0,1}

F (x) = F(k,)

That 1s, F Iinduces a set of functions for each n:
(F {03 >{0.1" | ke{0,3"]

61

Pseudorandom functions
Let F be a keyed length-preserving function.
Recall Func_ = the set of all functions f :{0,1}" — {0,1}".
F iIs a pseudorandom function if the two ensembles of sets

({Fk I e{O,l}”})nEN and (Func,)

are polynomially indistinguishable, i.e., if for every PPT
distinguisher D, it holds:

| Pri DY (") =1: k «, {0,3}" |
- Pr|D'Y@") =1: f «, Func, | |< negl(n)

62

General pseudorandom functions
Let F: {0, ™ x{0,13"™ — {0,13*™ be a keyed function.

Define Func, = the set of all functions f :{0,1}'" — {0, 1}«

F is a pseudorandom function if the two ensembles of sets

({F Ik efo.})

are polynomially indistinguishable, i.e., if for every PPT
distinguisher D, it holds:

and (mn)

neN neN

| Pri DO =1: k «, {0,13*"]

- Pr[D'O@) =1: f «, Func, | |< negi(n)

63

Example keyed length-preserving function
Suppose F(k,x) =k @ x.
Then, F . (X)=k®x.
Is F a pseudorandom function?
Foranyk and x, F, (x) ®F (X) =(k®x)®(k®X)=1".

Based on this, we design a distinguisher D as follows.
Given a function h (as an oracle), D asks the oracle to

compute h(x) and h(xX) for some x €{0,1}", say x =0".

If h(x) ®h(X)=1", D returns 1, else returns 0. We have
Pri D59 (1") =1: k «,{0,1" |=1

PriD'O(1") =1: f «, Func, |=2"

64

PriD'O(1")=1: f «, Func, |
= Pr[f is picked]-Pr| D"?(1") =1]
f

1
2n2”

Y Prl f(x) @ f(x)=1"]

1 | 2n2”
2n2n 2”
1

2n

65

Permutations

A function f : X — X is called a permutation if it is
bijective (one-to-one and onto).

We are interested in permutations f :{0,1}'"" — {0,1}'",
especially with I(n) =n.

66

Pseudorandom permutations

A keyed permutation is a keyed function F for which
each F, Is a permutation.

Perm_, the set of all permutations f :{0,1}" — {0,1}".

A length-preserving keyed permutation F is a pseudorandom
permutation if for every PPT distinguisher D, it holds:

| Pri D50 @") =1: k «, {0,1" |
- Pr[D" =1: f «, Perm_| [< negi(n)

Theorem: A pseudorandom permutation is also a pseudorandom
function (assuming I(n) > n).

67

CPA-secure encryption using pseudorandom functions

Let F be a pseudorandom function. Construct an encryption
scheme IT for messages of length n as follows.

Gen: oninputl’, output a key k <, {0,1}".

Enc: oninput a key k €{0,1}" and a message m €{0,1}",
choose uniformly a string r <, {0,1}" and output the ciphertext
c:=(r, F(r)®m).

Dec: oninputakeyk e{0,1}" and a ciphertext c =(r, s), output
the plaintext message m:=F, (r) ®s.

68

[Random string r

Pseudorandom

function E |
v k

, Ciphertext

69

Theorem: The encryption scheme IT is CPA-secure.

Proof (basic idea).

In scheme IT, a function f e Func, is used as a key.

In scheme I, a function F, e {F, :k e{0,13"} is used as a key.

Since Func, and {Fk ¢ e{O,l}”} are indistinguishable, it can be

shown by reduction that
‘Pr[PrivKZ‘f""H(n):l] — Pr[PrivK‘;\‘faﬁ(n):l]‘s negl(n)

We already know

Pr[PrivKi\faﬁ(n):l] < %+neg|(n).

Thus, Pr[PrivK‘jjfaH(n):l] < %+neg|(n).

70

If F Is a pseudorandom permutation

Since F is also a pseudorandom function, we may encrypt
a message m {0,1}" as before:

1) c=(r, R(r)®m), wherer «,{0,1}". //CPA-secure//
If F*(m) is efficiently computable, we may also encrypt m as
2) c=F(m) //deterministic, so not CPA-secure//

3) c:=(r, R (r®&m)), wherer «, {0,1}". //CPA-secure//
Q: How to decrypt a ciphertext ¢ =(r, s)?
(Assume that F, is efficiently computable.)

71

Modes of Operations

K&L: Section 3.6.2

72

Encrypting long messages

Now let's see how to encrypt a message of arbitrary length
using a pseudorandom function or permutation.

Encryption algorithm: On input m €{0,1} and key k,
- Pad the message so that its length is a multiple of n (block size).
o Divide the padded message m into blocks, say

m= (m,m, m,, ..., m)
- Individually encrypt each block m.:
r<,{0,1}" and ¢, =F (r)®m
« The final ciphertext is

C.= <(r11 C1)1 (r2’ CZ)’ R (I':[, Ct)>

The ciphertext is twice as long as the message. Inefficient!

73

Modes of operation

More efficient ways to do it are traditionaly called modes of
operation (of block ciphers).

Main idea: generate a single random string IV «, {0,1}" and
deriver, r,, ..., r. from IV. (IV : Initialization Vector)

The ciphertext will be of the form
c=(IV,c,¢C,, ..., C)

Important modes of operation:

- Counter mode (CTR): r. =1V +1i
» Output feedback mode (OFB): r, =1V, r,=FR(r._)
» Cipher feedback mode (CFB): ¢, =1V, r, = ¢c,

» Cipher block chaining mode (CBC): c¢,=1V, 1, == ¢,

74

Counter mode (CTR)
ldea: Thestringsr,r,,,r. arer =1V +1 for1<i<t.

Thus, to encrypt a message m = (ml, m,, m,, ..., mt) with key k

« Choose a random string IV < {0,1}".
« Encrypt m as
c:=(IV, ¢, C,, ..., C,), Where ¢, :=F () ®m,
=1V +Ii

Strength: Blocks can be encrypted (or decrypted) in parallel

or 1n a “random access’’ fashion.

75

Counter Mode (CTR)

A
ctr ctr+1
M
ctr o

I £

ctr+2 ctr+3

76

Output feedback mode (OFB)

ldea: Thestringsr,r,,,r arer, =1V and r

F ()
Thus, to encrypt a message m =(m,, m,, m,, ..., m,) with key k
« Choose a random string IV «, {0,1}".
« Encryptmas c:=(IV, c, ¢, ..., C,)
where ¢ =F (r)®m
=1V, and r:= F (r_) for 2<i<t

77

Output feedback

78

Cipher feedback mode (CFB)

ldea: Thestringsr,r,, ..., r. arechosentober = c

where c, = IV and c._, Is the previous cipher block.

Thus, the ciphertext of m=(m;, m,, m,, ..., m) is
c:= (Cy €y Cyy -y C)
where c,:=1V
c =F(c_,)®m for 1<i<t.

1

79

How Is Cipher Feedback (CFB)
different from OFB?

80

Cipher block chaining mode (CBC)

Assume F is a pseudorandom permutation and F, ™
Is efficiently computable.

Each block m; is encrypted as ¢, = F, (r, ®m;).

Thestringsr, r,, ..., r, arechosento ber, =c_, for 1<i <t,
with ¢, = IV, and c,_, being the previous cipher block.

Thus, the ciphertext of m=(m,, m,, m,, ..., m) is
c= (Cy C\ Gy --vy C)
where ¢, =1V
c =F(_®m)for 1<i<t.

81

Cipher block chaining (CBC)

v

1A%

82

CBC

e m, m; m,

*~ ! &

IV &b »D Ny 1\’ 2
* * L | |

Chained CBC
e Used in SSL 3.0 and TLS 1.0, but i1s not CPA-secure.

Message 1: (m,, m,, m,) Message 2: (m,, m,)
n;
s |
Fi |
» ‘L |
{4 C C-

84

Insecurity of Chained CBC

Let adversary A chooses two messages M =(m,, m,, m,),

M'=(m;, m,, m,) such that m, = m,.
Let C=(1V, ¢, c,, c;) be the challenge ciphertext.

A knows the oracle is going to use c, in the next encryption.
So, A prepares m, such that IV @&m, =c, ®m,, and asks
the oracle to encrypt it. Suppose A receives ¢, from the oracle.

Depending on whether c, =c,, A knows whether C is the
encryption of M or M".

85

IsC =(IV, c, c,, c,) the encryption of M =(m, m,, m,)
orM’'=(m;, m,, m,)?

86

Electronic codebook mode (ECB)

Use a pseudorandom permutation F.
m=(m, m,, m,, ..., m)
Each block m, is encrypted as ¢, = F, (m;).

The resulting scheme is deterministic and not CPA secure.
Used only for sending a short message (in a single block).

87

Electronic Code Book (ECB)

88

Security of CBC, OFB, CFB, CTR

If F is a pseudorandom function or permutation, then
OFB, CFB, CTR are CPA-secure.

If F is a pseudorandom permutation, then
CBC is CPA-secure.

89

Chosen-Ciphertext Attacks

K&L Section 3.7

90

CCA indistinguishability experiment PrivKe, (n)

1. A key k < Gen(1") is generated.

2. The adversary is given input 1" and oracle access to Enc, (-) and
Dec, ().

3. The adversary chooses two message m,, m, with [m;|=|m,|; and
IS given a challenge ciphertext ¢ <~ Enc, (m,), where b «, {0,1}.

4. The adversary continues to have oracle access to Enc, (-) and Dec, (:),
but is not allowed to request the decryption of c itself.

5. The adversary finally outputs a bit b’.
6. The output of the experiment is1iffb=D".

Note: The CCA defined here has the capabilities of both CPA and
"pure CCA".

91

CCA-security

Definition: A private-key encryption scheme IT has
Indistinguishable encryptions under a chosen-ciphertext attack,

or is CCA-secure, If for all PPT adversaries A, there is a negligible
function negl(n) such that (for all n)

Pr[PrivK‘jﬁaH(n):l] < %+negl(n)

where the probability is taken over the randomness used by A
as well as the randomness used in the experiment.

AFOL (10 'm- my, Enc, (m,)) =b:

Pr| PrivK? (n)=1|=Pr
P =L]=P 03, ke Gen(t), mym, < AQY

92

CCA-security for multiple encryptions —
Experiment PrivK, :®(n) : same as Privi ;" (n) except ... (what?)

Definition: A private-key encryption scheme IT has

Indistinguishable multiple encryptions under a chosen-ciphertext attack,
or Is CCA-secure for multiple encryptions, if for all PPT adversaries A,
there is a negligible function negl(n) such that (for all n)

Pr[PrviLRCCa(n) 1] < %+neg|(n)

where the probability is taken over the randomness used by A
as well as the randomness used in the experiment.

Theorem: For any private-key encryption scheme,
CCA-security = CCA-security for multiple encryptions.

93

CCA Insecurity

The encryption schemes we have seen so far are not CCA-secure.

If a ciphertext ¢ «<— Enc,(m) can be manipulated in a controlled way,
then the encryption scheme is not CCA-secure.

Example: consider the scheme Enc, (m) < (r, F (r)®m).

The adversary chooses any two messages m,, m, of equal length.

Let the challenge ciphertext be (r, c) where

c:= F (r)®m,, with b {0,1}.

The adversary modifies (r, c) to (r, T)=(r, f (r)®m,), which
IS a legitimate ciphertext of m, .

Requesting the oracle to decrypt (r, 6), the adversary will get m,

and hence know the value of b. N

Constructing a CCA-secure encryption scheme
We will see that:

CPA-secure encryption + secure MAC
— CCA-secure encryption

95

Padding-Oracle Attack:
a concrete example of (partial)
chosen-ciphertext attacks

K&L Section 3.7.2

96

The Setting

We will attack the CBC-mode encryption scheme that uses
PKCS#5 padding.

L : block length (in bytes).
b: pad length (in bytes). 1<b<L <255

PKCS#5 padding:
« The value of b (as an 8-bit binary) Is repeated b times.
« Examples: 0x01, 0x0202, 0x030303, 0x04040404.

Message refers to the original message (w/o padding).

Encoded data refers to the padded message.

The encoded data Is encrypted using CBC-mode encryption.

97

A Padding Oracle

On recelving a ciphertext, the receiver decrypts it to recover the
encoded data and checks if the padding is correct.

If not correct, the receiver typically sends back a "bad padding"
error message (e.g., in Java, javax.crypto.BadPaddingException).

Such receivers provide the adversary with a padding oracle
which may be viewed as a partial decryption oracle.

ciphertext —

: . Padding Oracle
error (if padding incorrect) <«

Using such a padding oracle, the adversary can recover the
original message.

98

Modify the encoded data in a controlled fashion

Suppose the encoded data is (m,, m,), unknown to the adversary;

and the ciphertextis {1V, c,, c,), known to the adversary.
Recall: ¢, =F (m,®c,) andso m,=F ~(c,)®c,.
Thus, m, @A=F 7(c,)®c, ®A. Thatis,

(IV,c,c,) —> (m,m,)
(IV,c,®A, ¢c,) —=> (m,, m,®A)
By modifying the ciphertext, the adversary can modify the

encoded data in a controlled fashion and then ask the oracle
If the padding (of the modified encoded data) Is correct.

99

Cipher block chaining (CBC)

v

1A%

100

Find out the pad length b

Example: modifying the 5th byte will result in a padding error.

m, = | Ox33 | 0x22 | Ox11 | Ox44 | Ox03 | Ox03 | 0x03

In general, to find the pad length, the adversary runs:
fori « 1toL do
modify the ith byte of c,
send the resulting ciphertext to the receiver/oracle

If receiving a padding error then return b:=L — (i —1)

101

Recover the message byte by byte

Having known b = 3, how to recover the byte w?

m, = X y Z w | Ox03 | 0x03 | 0x03

m, = X y z |w@i | 0x04 | Ox04 | Ox04

. Try (how?) every string i €{0,1}° until there is no padding error,

for which 1, WPI=0x04 = w=0x04i
+ How: modify ¢, toc, @ A,, with A, = 0°0°0°i (0x03® 0x04)’
and present the resulting ciphertext (IV, ¢, ® A, c,) to the

oracle, which after decryption will see (m/, m,).

102

Recover the message byte by byte

Having recovered w, how to recover z?

m, = X y Z w | 0x03 | 0x03 | 0x03

m, = X y | z®i1 | 0x05 | 0x05 | 0x05 | Ox05

. Try every string i €{0,1}° until no padding error, then
ZP1=0xX05 = z=0x05i

+ How: modify ¢, to ¢, ® A,, with A, = 0°0°i (w @ 0x05)(0x03 & 0x05)’
and present the resulting ciphertext (IV, ¢, ® A;, ¢,) to the

oracle, which after decryption will see (m/, m;).

103

