
1

Symmetric-Key Encryption

CSE 5351: Introduction to Cryptography

Reading assignment:

• Chapter 3

• Read sections 3.1-3.2 first (skipping 3.2.2)

2

0

0

 A nonegative function : is said to be

 if for every positive polynomial (), there is an integer

 such that

1

negligible

 () for all (i

.
()

Negligible functions

f

P n

n

f n n n
P n

log

e., for sufficiently large).

 Examples: 2 , 2 , are negligible functions.

 Negligible functions approach zero faster than the reciprocal of

 polynomial.

 We wri

every

negl()te to d

n n n

n

n

n

 enote an unspecified negligible function.

3

1

1 2

2

negl (

 If negl () and negl () are negligible functio

) ne

ns, then

 is negligible.

 If negl() is a negligible function and () a polynomial, then

gl ()

Properties of negligible functions

n n

n n

n p n

100 log

 is negligible.

 Examples

() n

: 2 2 and are negligible

egl

.

()

n n nn

p n n

n

4

 In perfect indistinguishability (perfect secrecy),

 the adversary has

 unlimited computing power,

 success rate

 also, message

1 2;

Relaxing the security requirement

 length .

 Now we relax the notion of perfect indistinguishability by

 limiting adversaries to having computing power,

 allowing the success rate to be

is hidden

poly()

1 2 negl(),

 n

n

n

 messageot hidin leng gth.

5

 The in the previous slide is called a

which indicates the

 We will associate an encryption scheme with a

 secureity parameter , an

security

 parameter, key len

d w

g .

u

th

o

Security Parameter

n

n

ld like to be secure

 in the sense that any adversary with computing

 power can break with at most probability

(

(.

)

)

poly n

negl n

6

 Probabilistic polynomial-time algorithms

 Polynomial-time : the running time is polynomial in .

 is the number of bit

input le

s of the

ngth

Input le input.

 What is the len

ngth

gth of

PPT Algorithms

 in binary, and what is the length of 1 ?

 What is the difference between these two statements:

 () is a PPT algorithm.

 (1) is a PPT algorithm.

n

n

n

A n

A

7

 A tuple of polynomial-time algorithms: (, ,)

 Key generation algorithm : On input 1 , outputs a

 key {0,1} . We

write

(

Private-key encryption scheme w. security parameter

n

n

Gen Enc Dec

Gen

k k Gen

n

*

1). (: security parameter.)

 Encryption algorithm : On input a key and a message

 {0,1} , outputs a ciphertext . We write ().

 Decryption algorithm : On input a key an

 d

n

k

n

Enc k

m c c Enc m

Dec k

*

a ciphertext ,

 outputs a message or an error symbol .

 We write : ().

 Correctness requirement: for every (1) and {0,1} ,

 () .

 , are prob

k

n

k k

c

Dec m

m Dec c

k Gen m

Dec Enc m m

Gen Enc

abilistic. , deterministic. Dec

8

() If message space {0,1} , then (, ,) is

 said to be a private-key encryption scheme for

 messages of length ().

 If (1) simply outputs {0,1} , we omit

fixed-l t

h

eng

n

n n

u

M Gen Enc Dec

n

Gen k Ge

 and simply

 denote the scheme by (,). This is almost always the case.

n

Enc Dec

9

eav

,

PPT singl Adversary: eavesdropper with a ciphertext.

 (, ,) : an encryption scheme with security parameter .

 Imagine a

game pla

(

)

e

Ciphertext Indistinguishability Experiment PrivKA

Gen Enc Dec n

n

0 1

0 1

yed by Bob and an adversary (Eve):

 Eve, given input 1 , outputs a pair of messages ,

 with (i.e., .

 Bob chooses a

having the sa

key (1) and a bit

me le

{0,1};

ngth)

n

n

u

A

m m

m m

k Gen b

0 1

eav

,

 computes (); and gives to Eve.

 Eve outputs a bit , trying to tell whether is an

 encryption of or .

 The Poutput, of the experirivK (),

ment

 is 1 i ff

k

A

bc E m c

b c

m m

bn

 (i.e., Eve succeeds.)

b

10

 A private-key encryption schem

 indistinguishab

e has

 (or is

) if for

le encryptions against an eavesdropper

 E

Defini

AV-secure

tion:

 all p

o

r

Ciphertext Indistinguishability against an eavesdropper

eav

,

babilistic polynomial-time adversaries ,

 there is a negligible function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the random

A

A

negl n n

n n

 0 1eav

,

0 1

ness used by ,

 the randomness used by Bob to choose the key and the bit ,

 as well as the randomness used by .

1 , , , () :
 Pr PrivK () 1 Pr

{0,1}, (1), ,

n

k b

A
n

u

A

b

Enc

A m m Enc m b
n

b k Gen m m A

 (1)n

11

eav

,

eav

,

 For 0 or 1 (fixed), let PrivK (,) denote the previous

 experiment with the fixed used.

 Let output PrivK (,) denote the adversary's output.

 Pr o

utpu

An equivalent formulation

A

A

b b

n

b

b

n

 0 1eav

,

0 1

1 , , , () 1:
t PrivK (,) 1 Pr

(1), , (1)

 A private-key encryption scheme i EAV-secures

 if and

The

only if for all PPT adversaries , there is a ne

orem:

gli

n

k

A

b

n n

mA m m Enc
n

k Gen m m A

A

b

 eav eav

, ,

gible

 function () such that

 Pr output PrivK (,) 1 Pr output PrivK (,) 1

 ne

0

()

1

gl .

A A

negl n

n n

n

12

 0 1 0 1

0 1

0 1

0 1

 That is,

1 , , , () 1: 1 , , , () 1:
 Pr Pr

(1), , (

1) (1), , (1)

 ()

n n

k k

n n n n

A m m Enc A m m Enc

k Gen m m A k Gen m m A

negl n

m m

13

 Let denote the th bit of .

 If an encryption scheme is EAV-secure, then from a ciphertext

 (), it is infeasible for the adversary t

o

Adversaries cannot learn any bit of the plaintext

i

k

m i m

c Enc m

()

 recover .

 If a fixed-length private-key encryption scheme with

 {0,1} is EAV-secure, then for all PPT adversaries and

 any 1, , () , it holds:

 Pr

 Theorem:

1 , () : {0,1

}

i

n

n i n

k u

m

M A

i n

A Enc m m k

() 1
, {0,1} negl().

2

n

um n

14

 Secure: EAV-secure, CPA-secure, or CCA-secure.

 Secure private-key encryption schemes may be constructed from:

 Pseudorandom generat

ors

 Pseudorandom functions

Secure Encryption Schemes

 Pseudorandom permutati ons.

Pseudorandom Generators and

Stream Ciphers

Encryption schemes using pseudorandom

generators

K&L: Section 3.3

15

16

 Vernam's one-time pad scheme is perfectly secure against

 single-ciphertext eavesdropper.

 Drawback: it requires a random key as long as the message.

 Solution: use a short key as

Motivation

 seed to generate a "pseudorandom"

 key that is as long as needed.

 This is the basic idea of stream ciphers.

17

 The term "stream cipher" may refer to the entire encryption scheme

 or just the pseudorandom generator.

Stream ciphers

18

 Informally, a pseudorandom generator is an algorithm that given

 a () string , outputs a " "

 (i.e.,pseudorandom) string l

short truly random ra

onge

nd

r

om-like

What is a pseudorandom generator?

G

s

than .

 Informally, a string is " " if it is to tell

 whether or not is generated by a generator.

 Loosely speaking, two sets ,

r

{0,1} are said to be

andom-like hard

truly-ra

polynomia

ndom

n

n n

s

r

r

A B

 if for every polynomial distinguisher ,

lly

indistinguishable

Pr () 1:

Pr negl() 1 ():

|

|
u n

nu

D r r

D r

D

A

nr B

19

 In the above, we were actually talking about the indistinguishability

 between two ensembles (sequences) of sets: and .

 Two ensembles of setDefinit sion:

pol

 and are

n nn n

n nn n

A B

A B

 if for every polynomial-time

 distinguisher , it holds that

 Pr () 1:

 Pr () 1: negl()

ynomially ind

istinguishable

|

|

u n

u n

D

D r r A

D r r B n

 100

1

Which of the following are polynomially indistinguishable?

 {0,1} , {0,1} 0

 {0,1} , {0,1} : 2 as a binary integer

 {0,1} ,

 0 {0,1}

n n n

n n

n n

n n

n n

n n

A B

A B s s

A B

20

Pr Pr () 1

1

{0,1} and {0,1} 0

are polynomially indistinguishable

 Pr () 1
2

1

.

Pr

()

Pr ()
2

1:

0

n

n

n

A

A

n n n

n

r

n
r

u

n

n

n

r D r

D r

D

A

A B

D r r

1
1 Pr () 1

2

Pr Pr () 1

1
 Pr () 1

2 1

Pr () 1:

Pr ()P negr () 1: 1 l) (:| |

n

n

n

n
r

r

n
r

B

n

B

uu

B

n

u

nD r r

D r

r DD r r

D r r

D

B

A B

r

r

n

21

 Let () be a polynomial such that () for all 0.

 Let be a deterministic polynomial-time algorithm that, for any

 input string {0,1} , outputs a st

Definition of pseudorandom generator

n

n n n

G

s

()ring () {0,1} .

 is said to be a with ()

 if for every polynomial-time distinguisher ,

pseudorandom generator expansion

 Pr (()) 1: {0,1

}

facto

r

|

n

n

u

G s

G

D

D G s s

()

()

 Pr () 1: {0,1} negl()

 That is, the two ensembles and , are polynomially

 indistinguishable, where () : {0,1} and 0,1 .

 |n

u

n nn N n N

nn

n n

D r r n

A B

A G s s B

22

1 1

1 11

 Let () () for {0,1} .

 Expansion facto

not

r () 1.

 is a pseudorandom generator:

1 if
 For {0,1} , let ()

0

Example: pseudorandom generainsecure tor

n

n n

n nn

G s s s s s s s

l n n

G

r r r
r D r

1

otherwise

 Pr (()) 1: {0,1} 1

 Pr () 1: {0,1} 1 2

 Difference between the two probabilities is not negligible.

n

u

n

u

D G s s

D r r

23

 A string is said to be a if it is generated

 by a true random generator (i.e., {0,1} , where).

 A string is said to b

random string

pseudorandom stringe a if it is generated

Remarks

u

r

r r

r

()

 by a pseudorandom generator.

 What if the distinguisher has unlimited (or exponential) time?

1 if () for some {0,1}
 Given {0,1} , let ()

0 otherwise

 Pr (()) 1: {0

n

n

u

D

r G s s
r D r

D G s s

() () ()

,1} 1

 Pr () 1: {0,1} 2 2 1 2

 Difference between the two probabilities is not negligibl .e

n

n n n n n

uD r r

24

 If one-way functions exist, then pseudorandom generators

 exist.

 That is, pseudorandom generators can be constructed from

 one-way functions.

 Chap

Existence of pseudorandom generators

 ter 7 of the K&L book shows how to construct pseudorandom

 generators from one-way permutations.

 True pseudorandom generators are slow for applications.

 In practice, algorithms such as RC4 are

 used.

25

 Let :{0,1} {0,1} be a one-way function.

 Let hard-:{0,1} {0,1} be a of .

 A boolean function defined on the do

co

main of

re pred

e

.

icat

Existence of pseudorandom generators (basic idea)

n n

n

f

b f

f

0

0

0 1 2 () 1

 Easy to compute () from .

 But hard to compute () from ().

 Given seed , let .

 Starting from , apply repeatedly:

 Let () (

f f f f

l n

b x x

b x f x

x x x

x f

x x x x

G x b

 0 1 2 () 1), , , , .

 is a pseudorandom generator with expansion factor ().

l nx b x b x b x

G l n

26

2

 Let for two large primes , .

 Let () mod . //one-way function//

 Let () the least significant bit of

Blum-Blum-ShubExample: pseudorandom generator

n pq p q

f x x n

b x

0 1 2 () 1

0 1 2 () 1

 //hard-core predicate//

 Let () (), , , , .

 is a pseudorandom generator with expansion factor ().

f f f f

l n

l n

x

x x x x

G x b x b x b x b x

G l n

27

0

 Suppose 29 31 899.

 Suppose 100.

 Then we have the sequence

 100, 111, 634, 103, 720, 576, 45, 227, 286, 886, 169,

 692,

Blum-Blum-ShubExample: pseudorandom generator

n pq

x

 596, 111, 634, 103, 720,

 The generated bits are 01010011001001010

28

 From a pseudorandom generator with expansion factor (), we

 can easily construct an EAV-secure ()-bit encryption scheme.

 : a pseudorandom

Encryption schemes based on pseudorandom generators

n

n

G

()

 generator with expansion factor ().

 Key generation: on input 1 , outputs a key 0,1 .

 Encryption: on input a key 0,1 and a message 0,1 ,

 outputs the ciphertext

nn

u

n n

n

k

k m

()

 : ().

 Decryption: on input a key 0,1 and a ciphertext 0,1 ,

 outputs the : ().

 Denote this scheme by .

n n

c m G k

k c

m c G k

29

0 0

1

 The scheme constructed above is EAV-secure

 (i.e. has indistinguishable encryptions against eavesdroppers).

 If encrypting with a truely random

I

s

The

tri

ntu

orem.

ng

ion

:

it :

Security

c rm

m

r

c

 1

0 0

1 1

 perfectly indistinguishable

 If a pseudorandom string is us()

()

()

ed instead:

 polynomially indistinguishable

r

G s

G sc m

c m G s

30

P

0 1

 We will show:

Distinguishing between Breaking encryption scheme

 random strings and (distinguishing between

pseudorand

By

om strings () ciphertexts a

redu

nd)

 Not

n.

ctio

Proof sketch

r

G s c c

Pation. A B: A reduces to B in polynomial time.

 Roughly meaning that we can solve A using an algorithm for B as a

 subroutine. Hardness of A hardness of B.

 Example?

31

()

 Let be an arbitrary PPT adversary against encryption scheme .

 Construct a distinguisher :

 , given as input a string 0,1 , wants to determine

 whether is random or pseudor

l n

A

D

D w

w

()eav

, 0 1

andom.

 runs PrivK () to obtain a pair of messages , 0,1 .

 chooses {0,1}, sets : , gives to , and

 obtains from .

 outputs 1 if , and out

l n

A

u b

D n m m

D b c m w c A

b A

D b b

 puts 0 otherwise.

32

eav

,

0 1

1

,

 adversary
 against
 encryption
 scheme

Run PrivK

{0,1}

:

: ()

Distinguisher

A

u

b

n

m m

c

b

A
w

b

c m w

ans b bans

D

33

*

() eav

,

*

()

eav

,

 Pr () 1: {0,1} Pr PrivK 1

 where is Vernan's one-time pad.

 Pr () 1: : (), {0,1}

 Pr () 1: {0,1}

1

 Pr () 1

2

Pr PrivK 1

|

l n

u A

n

u

l n

A

u

D w w

D w w G s s

D w w

D w

eav

,

eav

,

: : (), {0,1} ()

 So, 1 2 Pr PrivK 1 ()

 Pr PrivK 1 1 2 ()

 is EAV-secu

(Why?)

re

|

| |

n

u

A

A

w G s s negl n

negl n

negl n

34

 Stream ciphers require a new key for each message.

 In practice, Alice and Bob wish to share a permanent key and

 use it to encrypt multiple messa

Encrypting multiple messages with a single key

k

ges. One possible strategy:

 For each message , generate a random string and use

 as a seed to the pseudorandom generator .

 Include in the ciph : () :ertext, i.e .

, k

m r

s k r

c Enc

G

mr

not necessarily EAV-

 Unfortunately, the resulting scheme is .

 It requires to be more than a pseudorandom

 It is

generat

probabilis

or for the

se

, ()

 sc

tic!

heme to be EA

cure

.

V-sec

r

G

m G k r

ure.

35

1 2

1 2

 At the beginning of a session, Alice and Bob agree on two keys

 and (called session keys).

 Alice and Bob each run () and () to get two (long enough)

Using stream ciphers in a session

k k

G k G k

1 2

1 2 3

1 2 3 11 2 3

2

 pseudorandom strings, say and .

 Alice encrypts her sequence of messeges , , , ... as

 , , , ... : , , ,

 Bob uses for encryption in a similar way.

PS PS

m m m

c c c m m m PS

PS

In practice, a stream cipher is designed to generate a random string

 of desired length bit/byte by bit/byte byte on demand.

36

 Most popular stream cipher

 Simple and fast

 Used in many standards

 Actually not a cipher, but a practical, approximate

 pseudorandom generato

•

•

•

•

. N tr o

The RC4 Stream Cipher (K&L: Section 6.1.4)

 Designed by Ron Rivest in 1987 for RSA Security,

 and kept as a trade secret until

 truely pseudorandom.

 leaked out in 1

•

994.

37

 Two vectors of :

 [0], [1], [2], , [255]

 [0], [1], [2], , [255]

 Input Key (seed) : variable length, 1 to 256 bytes

 Initialization:

 1. [] , for 0 255

byt

es

 2.

RC4

S S S S

T T T T

K

S i i i

 [0..255] , , ... (until filled up)

T K K

38

 Initial Permutation of :

 0

 for 0 to 255 do

 ([] []) mod 256

 Swap [], []

 Idea: swapping bytes dependentl

RC4: Initial Permutation

S

j

i

j j S i T i

S i S j

 y of the input key.

 After this step, the input key will not be used.

39

 Key stream generation:

 , 0

 while (true)

 (1) mod 256

 ([]) mod 256

 Swap [], []

RC4:Key StreamGeneration

i j

i i

j j S i

S i S j

 ([] []) mod 256

 output []

 Idea: systematically keep swapping and producing

 output bytes

t S i S j

S t

Security of RC4

• RC4 is not a truly pseudorandom generator.

• The key stream generated by RC4 is biased.

– The second byte is biased toward zero with high probability.

– The first few bytes are strongly non-random and leak

information about the input key.

• Defense: discard the initial n bytes of the keystream.

– Called “RC4-drop[n-bytes]”.

– Recommended values for n = 256, 768, or 3072 bytes.

• Efforts are under way (e.g. the eSTREAM project) to

develop more secure stream ciphers.

40

The Use of RC4 in WEP

• WEP is an RC4-based protocol for encrypting data transmitted

over an IEEE 802.11 wireless LAN.

• WEP requires each packet to be encrypted with a separate RC4

key.

• The RC4 key for each packet is a concatenation of a 40-bit or

104-bit long-term key and a random 24-bit R.

41

lRC4 key: Long-term key (40 or 104 bits) R (24)

lHeader R Message CRC

encrypted

802.11

Frame:

WEP is not secure

• Mainly because of its way of constructing the key

• Can be cracked in a minute

• http://eprint.iacr.org/2007/120.pdf

42

http://eprint.iacr.org/2007/120.pdf

Stronger Security Notions

K&L: Section 3.4

43

44

 EAV-security (against eavedroppers, ciphertext-only-attacks)

 one encryption

 multiple encryptions

 CPA-security (against chosen-plaintext attacks)

 one

Different levels of security

 encryption

 multiple encryptions

 CCA-security (against chosen-ciphertext attacks)

 one encryption

 multiple encryptions

45

mult

,

 Adversary: eavesdropper with multiple ciphertexts

 A game between Bob and an adversary :

 The adversary, given

lisinput 1 , sele c

()

ts two

Multiple-ciphertext indist. experiment PrivK

n

A

A

n

1 2 1 2

0 0 0 0 1 1 1 1

0 1

 (, , ...,) and (, , ...,)

 such that for all .

 Bob chooses a key (1) and a bit {0,1};

 computes () for all

ts of messages

t t

i i

n

u

i i

k b

M m m m M m m m

m m i

k Gen b

c Enc m

1 2

 , and gives the challenge

 ciphertext list (, , ...,) to the adversary.

 The adversary outputs a bit .

 The output of the experiment is 1 iff .

t

i

C c c c

b

b b

46

 A private-key encryption scheme

 indistinguishabl mu

D

l

ef

ti

init

plee en

has

if for a

io

cryptions against an eavesdropper

 ll PPT adversaries

n:

Multiple-ciphertext indist. against an eavesdropper

mult

,

 , there is a negligible function ()

 such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the randomness used by ,

 by Bob, by , an

A

A negl n

n

n n

A

Gen

0 1mult

,

0 1

d by .

(1 , , , ()) :
 Pr PrivK () 1 Pr

{0,1}, (1), , (1)

n

k b

A n n

u

Enc

A M M Enc M b
n

b k Gen M M A

47

 If the of an en

cryption scheme (Gen,Enc,Dec)

 is deterministic, then the scheme have indisting

Theorem:

cannot u

Deterministic encryption schemes

are not multiple-ciphertext indistinguishable

Enc

0 1

1 2

ishable

 encryptions against an eavesdropper.

 Proof. Suppose is deterministic.

 Let (0 , 0) and (0 , 1). Let the challenge ciphertext

 list be

mult

(,).

 What c

i

a

ple

n n n n

Enc

M M

C c c

1 2 1 2n say if (or if)?

 For example, Vernam's one-time pad (for a fixed) is

 single-ciphertext indistinguishable, but not multiple-ciphertext

 indistinguis

hable.

A c c c c

n

48

1 1

 The adversary is capable of adaptively obtaining samples

 (,), , (,), where is chosen by the adversary

 and () for all .

 We model such a

Chosen-Plaintext Attacks (CPA)

t t i

i k i

m c m c m

c Enc m i

n adversary by giving it access to an

, viewed as a "black box" that on query returns a

 ciphertext c ().

 Orac

encryption

 oracle (

le ()
(

)

)
k

k

k

k

m

Enc m

m
Enc

Enc m

Enc

49

cpa

,

1. A key (1) is generated.

2. The adversary is oracle a given input 1 and

(

 to (). It may

 request the oracle to encrypt messages of

cces

)

s

CPA indistinguishability experiment PrivKA

n

n

k

n

k Gen

Enc

0 1 0 1

its choice.

3. The adversary chooses two message , with ; and

 is given a challenge ciphertext (), where {0,1}.

4. The adversary continues to have oracle access to () and ma

k b u

k

m m m m

c Enc m b

Enc

0 1.

5. The adversary finally outputs a bit .

6. The output of the experiment

y

 even

is 1 iff

 request the encryptions

.

Note: The CPA here is an CPA.

of and

adaptive

b

b

m m

b

50

 indistinguishable encryptions under a chosen-plaintext attack,

 A private-key encryption scheme has

or is if for all PPT adversaries , there is a

De

f

CPA-secure,

inition:

neglig

CPA-security

A

cpa

,

ible

 function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the randomness used by

 as well as the randomness used in the exp

A

negl n n

n n

A

()

0 1cpa

,

0 1

eriment.

(1 , , , ()) :
 Pr PrivK () 1 Pr

{0,1}, (1), , (1)

kEnc n

k b

A n n

u

A m m Enc m b
n

b k Gen m m A

51

1 2 1

0 0 0 0 1 1

 One approach is to model the adversary as having oracle access

 to () and having it produce two message lists

 (, , ...,) and (,

CPA-security for multiple encryptions

k

t

Enc

M m m m M m

2

1 1

,

, ,

0 1

 , ...,)

 Alternatively, we use an oracle LR-Enc (), where is a key

 and {0,1}. (LR-Enc () is denoted by LR () in the book.)

 ,
 Oracle

()

t

k b

k b k b

k b

m m

k

b

m m

Enc m

,

The adversary is to guess t

LR

he

-Enc ()

 value of .

k b

b

52

LR

,

,

-cpa

1. A key (1) is generated.

2. A bit {0,1} is chosen.

3. The adversary is given input 1 a oracle accend to LR-Enc ().

4. The adversary ou

s

(

t

s

)The LR-oracle experiment PrivK

n

u

n

b

A

k

n

k Gen

b

A

A

puts a bit .

5. The output of the experiment is 1 iff .

b

b b

53

 indistinguishable encryptions under a chosen-plaintext attack,

 CPA-

multipl

 A private-key encryption scheme Def has

or

secure

inition

for

e

mult iis p

e

:

le

CPA-security for multiple encryptions

LR-cpa

,

if for all PPT adversaries ,

 there is a negligible function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the pro

n

bability is taken over the ra

cryptions,

A

A

negl n n

n n

ndomness used by

 as well as the randomness used in the experiment.

 For any private-key encryption scheme,

 CPA-security CPA-security for multiple e

Theore

ncry

m:

p .

tions

A

Constructing CPA-Secure

Encryption Schemes

K&L: Section 3.5

54

55

Pseudorandom
generator

56

 Let be the set of all functions :{0,1} {0,1} .

 Construct an encryption scheme as follows.

 Key generation: uniformly choose a function

Func

A CPA-secure encryption scheme (inefficient)

n n

n f

f

.

 To encrypt a message {0,1} , uniformly choose a

 string {0,1} , and encrypt as .

 To decrypt a ciphertext , , co

Fun

mpute : ()

c

()

.

: ,

u

n

n

n

u

m

r m

c r s m s

r

r

c r m f

f

57

cpa

,

 The encryption scheme is CPA-secure.

 Consider any arbitrary adversar

Th

y .

 In the experiment PrivK (), let : , () be the

 challenge cipher

eo

text

re

.

m:

Proof (sketc

)

S

h .

bA

A

n c m fr r

ince () is uniformly random,

 indistinguishable , on 's query , the oracle happens

 to return : , () , in which case will learn ().

 This

u

 may occur wi

nle

th probability

ss

m

f r c is

A m

c mr f r A f r

cpa

,

 at most poly() 2 , where

 poly() is an upper bound on the number of queries may

 make to the oracle. Thus,

1 1
 Pr PrivK () 1 poly() 2 negl().

2 2

n

n

A

n

n A

n n n

58

key

key

 The secret key here is . Q: What's its length?

 Suppose we label the elements/functions in Func with strings

 {0,1} . What's the key length ?

 How many elements/functions are t

n

f

k

2

here in Func ?

 View each function as a table of 2 strings of length .

 There are 2 choices (0 or 1) for each of the 2 bits.

 So, there are different functions. I.e., Fun2
n

n

n

n

n

n

n

key 2

2

2 which is infeas

c .

 Thus, log 2 ible.,

2

2

n

n

n

n

n

n n

59

 Solution:

 Choose a "small" subset of , say , such that

 and are .

 Then, randomly picking a func

indistinguish

tion from (as the key)

a

 wi

ble

n n

n n

n

Func Func

Func Func

Func

ll be almost as good as randomly picking a function from

 .

 If we choose to contain no more than elements,

 the key length will be at most

2

.

 We will describe

n

n

n

Func

n

Func

 (which is a set of functions)

 as a single function with two parameters, called a keyed

 function.

nFunc

60

() () ()

()

 A : {0,1} {0,1} {0,1} for all 1,

 has two inputs.

keyed function

keyThe first one is called the and denoted .

 Each key {0,1} induces a single-input functi

Keyed functions

a n b n c n

a n

F n

k

k

() ()

key in out

on:

 :{0,1} {0,1}

 () (,)

 is associated with three functions, (), (), () (often written as

 (), (), ()) which indicate the leng

b n c n

k

k

F

F x F k x

F a n b n c n

l n l n l n

key in out

ths of , , and ().

 is if () () () .

 If is length-preserving, induces a set of functions for each :

 :{0,1}

Q: In general, wh

{0,1} | {0,1}

length-pres ng

a

ervi

k

n n n

k

k x F x

F l n l n l n n

F F n

F k

t set of functions does induce?F

61

 A : {0,1} {0,1} {0,1}

 has two inputs. The first one

keyed length-preser

 is called the

ving function

key and denoted .

 Each key {0,1} induces a single-

Keyed Length-Preserving functions

n n n

n

F

k

k

input function:

 :{0,1} {0,1}

 () (,)

 That is, induces a set of functions for each :

 :{0,1} {0,1} | {0,1}

n n

k

k

n n n

k

F

F x F k x

F n

F k

62

 Let be a keyed function.

 Recall Func the set of all functions :{0,1} {0,1} .

length-preserving

pseudorandom functi is a if the two ensembles of on sets

Pseudorandom functions

n n

n

F

f

F

()

 | {0,1} and Func

 are polynomially indistinguishable, i.e., if for every PPT

 distinguisher , it holds:

 Pr (1) 1: {0,1}

| k

n

k n
n

n n

u

F

n
F k

D

D k

() Pr (1) 1: Func negl()|f n

u nD f n

63

key outin

outin

() ()()

()()

 Let : {0,1} {0,1} {0,1} be a keyed function.

 Define Func the set of all functions :{0,1} {0,1} .

 pseudorandom functis a ion

General pseudorandom functions

l n l nl n

l nl n
n

F

f

F

 key

()

()

if the two ensembles of sets

 | {0,1} and Func

 are polynomially indistinguishable, i.e., if for every PPT

 distinguisher , it holds:

 Pr (1) 1: | k

l n
nk

nn

F n

F k

D

D k

 key

()

()
{0,1}

 Pr (1) 1: Func negl()|

l n

n
nu

f

u

D f n

64

 Suppose (,) .

 Then, () .

 Is a pseudorandom function?

 For any and , () () 1 .

 Based on this, we design

Example keyed length-preserving function

k

n

k k

F k x k x

F x k x

F

k x F x F x k x k x

 a distinguisher as follows.

 Given a function (as an oracle), asks the oracle to

 compute () and () for some {0,1} , say 0 .

 If () () 1 , returns 1, else returns 0. We

n n

n

D

h D

h x h x x x

h x h x D

()

()

 have

 Pr (1) 1: {0,1} 1

 Pr (1) 1: Func 2

kF n n

u

f n n

u n

D k

D f

65

()

()

2

2

2

Pr (1) 1: Func

Pr is picked Pr (1) 1

1
Pr () () 1

2

1 2

22

1

2

n

n

n

f n

u n

f n

f

n

n
f

n

nn

n

D f

f D

f x f x

66

() ()

 A function : is called a permutation if it is

 bijective (one-to-one and onto).

 We are interested in permutations :{0,1} {0,1} ,

 especially with () .

Permutations

l n l n

f X X

f

l n n

67

 A keyed permutation is a keyed function for which

 each is a permutation.

 Perm , the set of all permutations :{0,1} {0,1} .

 A length-preserving keyed permutat

pPseudorando ermutatio nsm

k

n n

n

F

F

f

()

()

ion is a

 if for every PPT distinguisher , it holds:

 Pr (1) 1: {0,1}

 Pr (1) 1: Perm n

pseudorandom

 pe

egl()

rmutation

|

|

kF n n

u

f n

u n

F

D

D k

D f n

 A pseudorandom permutation is also a pseudorandom

 function (assuming

Theore

)

m:

() .l n n

68

 Let be a pseudorandom function. Construct an encryption

 scheme for messages of length as follows.

 : on input 1 , output a key {0

CPA-secure encryption using pseudorandom functions

n

u

F

n

Gen k

,1} .

 : on input a key {0,1} and a message {0,1} ,

 choose uniformly a string {0,1} and output the ciphertext

 : , () .

 : on input a key {0,1} and a ciphertext ,

n

n n

n

u

k

n

Enc k m

r

c r F r m

Dec k c r

 , output

 the plaintext message : () .k

s

m F r s

69

kF

70

 The encryption scheme is CPA-secure.

 In scheme , a funct

Theorem:

Proof (basic idea).

ion is used as a key.

 In scheme , a function : {0,1} is used as a key.

n

n

k k

f Func

F F k

cpa cpa

, ,

 Since and : {0,1} are indistinguishable, it can be

 shown that

 Pr PrivK () 1 P

by reduction

r PrivK () 1 negl()

 We alread

y know

n

n k

A A

Func F k

n n n

cpa

,

cpa

,

1
Pr PrivK () 1 negl().

2

1
 Thus, Pr PrivK () 1 neg l . ()

2

A

A

n n

n n

71

1

 Since is also a pseudorandom function, we may encrypt

 a message {0,1} as before:

 : , , where {0,1} . //CPA-secure//

 If

()

))

1 (

peIf is a pseudorando rmu nm tatio

n

n

u

k

kF r

F

m

c r r

F

m

m

F

is efficiently computable, we may also encrypt as

 : () //deterministic,

()

 so not CPA-secure//

 : , , where {0,1} . //CPA-secure//

 2)

 3

Q:

)

How

k

n

k u

m

F r

c F

r m

m

c r

to decrypt a ciphertext , ?

 (Assume that is efficiently computable.)k

c r s

F

Modes of Operations

K&L: Section 3.6.2

72

73

*

 Now let's see how to encrypt a message of arbitrary length

 using a pseudorandom function or permutation.

 Encryption algorithm: On input {0,1} and key ,

 Pa

Encrypting long messages

m k

 1 2 3

d the message so that its length is a multiple of (block size).

 Divide the padded message i nto blocks, say

 , , , ,

 Individually enc

 rypt each block :

t

i

n

m

m m m m m

m

1 1 2 2

 {0,1} and : ()

 The final ciphertext is

 : (,), (,), , (,)

 The ciphertext is twice as lo

ng as the message.

n

i u i k i i

t t

r c F r m

c r c r c r c

 Ineffi cient!

74

1 2

 More efficient ways to do it are traditionaly called modes of

 operation (of block ciphers).

 generate a single random string Mai {0,1} and

 derive ,

n i

, ,

dea:

Modes of operation

n

u

t

IV

r r r

1 2

 from . (: Initialization Vector)

 The ciphertext will be of the form

 Important modes of operation:

 Counter mode (CTR):

 , , , ,

i

tc I

IV IV

r IV

V c

i

c c

1 1

0 1

0 1

 Output feedback mode OFB : , ()

 Cipher feedback mode CFB : , :

 Cipher block chaining mode CBC :

 , :

i k i

i i

i i

r IV r F r

c IV r c

c IV r c

75

1 2

1 2 3

 Idea: The strings , , , are for 1 .

 Thus, to encrypt a message , , , , with key

 Choose a random string {0,1} .

 Encrypt as

Counter mode (CTR)

t i

t

n

u

r r r r IV i i t

m m m m m k

IV

m

1 2 : , , , , , where : ()

 :

 St Blocks can be encrypted or decrypted re in parng ath: llel

t i k i i

i

c IV c c c c F r m

r IV i

 or in a “random access” fashion.

Counter Mode (CTR)

76

1 2 3 r r r

77

1 2 1 1

1 2 3

 Idea: The strings , , , are and ()

 Thus, to encrypt a message , , , , with key

 Choose a random string {0,1} .

 Enc

Output feedback mode (OFB)

t i k i

t

n

u

r r r r IV r F r

m m m m m k

IV

1 2

1 1

 rypt as : , , , ,

 where : ()

 : , and : () for 2

t

i k i i

i k i

m c IV c c c

c F r m

r IV r F r i t

Output feedback

78

1 2 3 r r r

79

1 2

0 1

1 3

1

2

 Idea: The strings , , , are chosen to be

 where and is the previous cipher block.

 Thus, the ciphertext of , , , , is

 : ,

Cipher feedback mode (CFB)

t i i

i

t

r r r

c IV c

m m m m

c

m

r

 0 1 2

0

1

 : , , , ,

 where :

 for 1 .: ()i k i i

tc c c c c

c IV

F m i tc c

How is Cipher Feedback (CFB)

different from OFB?

80

1 2 3 r r r

81

1

1 2

 Assume is a pseudorandom permutation and

 is efficiently computable.

 Each block is encrypted as .

 The strings , , , are chosen to be

Cipher block chaining mode (CBC)

k

i i k i

t i

i

F F

m c F r m

r r rr

0 1

1

1

1

2 3

0 2

0

 for 1 ,

 with , and being the previous cipher block.

 Thus, the ciphertext of , , , , is

 : , , , ,

 where :

 : (

i

t

t

i

i

k

i t

c IV c

m m m m m

c c c c c

c IV

c

c

F

 1) for 1 .i ic m i t

Cipher block chaining (CBC)

82

Chained CBC

83

1 2 3 4 5

 Used in SSL 3.0 and TLS 1.0, but is .

 Message 1: (, ,) M

not

essa

CPA

ge

-se

2:

cure

 (,)m m m m m

IV’

CBC

Chained CBC

84

1 2 3 4 5

 Used in SSL 3.0 and TLS 1.0, but is .

 Message 1: (, ,) M

not

essa

CPA

ge

-se

2:

cure

 (,)m m m m m

85

1 2 3

1 2 3 1 1

1 2 3

 Let adversary chooses two messages , , ,

 , , such that .

 Let , , , be the challenge ciphertext.

 knows the oracle is going to

Insecurity of Chained CBC

A M m m m

M m m m m m

C IV c c c

A

 3

4 1 3 4

4

1 4

 use in the next encryption.

 So, prepares such that , and asks

 the oracle to encrypt it. Suppose receives from the oracle.

 Depending on whether , knows whether

c

A m IV m c m

A c

c c A

 is the

 encryption of or .

C

M M

86

1 2 3 1 2 3

1 2 3

41 3

Is (, , ,) the encryption of (, ,)

 or (,

,)?

C IV c

IV

c c M m m m

c

M m m m

m m

1 4

 ?c c

1 1 or ?m m

87

1 2 3

 Use a pseudorandom permutation .

 , , , ,

 Each block is encrypted as .

 The resulting scheme is deterministic and CPA secure.

 Used o

n t

n

o

l

Electronic codebook mode (ECB)

t

i i k i

F

m m m m m

m c F m

y for sending a short message (in a single block).

Electronic Code Book (ECB)

88

89

 If is a pseudorandom function or permutation, then

 OFB, CFB, CTR are CPA-secure.

 If is a pseudor pandom , then

ermutati

 is CPA-secu

on

CBC re.

Security of CBC, OFB, CFB, CTR

F

F

Chosen-Ciphertext Attacks

K&L Section 3.7

90

91

cca

,

1. A key (1) is generated.

2. The adversary is given input 1 and oracle access to (

 .

3. The adversary ch

()

ooses two message

) and

()

CCA indistinguishability experiment PrivK A

n

k

k

n

n

En

k

c

G

Dec

en

m

0 1 0 1, with ; and

 is given a challenge ciphertext (), where {0,1}.

4. The adversary () ancontinues to have oracle access t

not allowed to request t

o ,

 but is he de

()

cr

d

yp

k k

k b u

m m m

c Enc m b

Enc Dec

5. The adversary finally outputs a bit .

6. The output of the experiment is 1 iff .

Note: The CCA defined here has the capabilities of both

tio

 CPA and

"pure CCA

n of itself.

".

b

b b

c

92

 indistinguishable encryptions under a chosen-ciphertext attack,

 A private-key encryption scheme has

 CCA-secure, or is if for all PPT adve

Definiti

rsaries , there is a negli

 on:

CCA-security

A

cca

,

gible

 function () such that (for all)

1
 Pr PrivK () 1 negl()

2

 where the probability is taken over the randomness used by

 as well as the randomness used in the ex

A

negl n n

n n

A

(), ()

0 1cca

,

0 1

periment.

(1 , , , ()) :
 Pr PrivK () 1 Pr

{0,1}, (1), ,)

(1

k kEnc Dec n

k b

A n n

u

A m m Enc m b
n

b k Gen m m A

93

LR-cpa

,

LR-cca

, : same as PrivK () excExperiment PrivK ()

Definition

ept ... (what?)

 A private-key encrypt

 ind

ion scheme ha

multipleistinguishable

s

:

CCA-security for multiple encryptions

A An n

or is if for all PPT adversa

encryptions under a chosen-

ries ,

 there is a neg

ciphertext attack,

 CCA-secure for

ligible function () suc

multip

h that

encryption

 (for all

s,

)

 Pr P

l

ri

e A

negl n n

LR-cca

,

1
vK () 1 negl()

2

 where the probability is taken over the randomness used by

 as well as the randomness used in the experiment.

 For any privatTh e-eore key encrym ptio: c n s he

A n n

A

me,

 CCA-security CCA-security for multiple encryptions.

94

 The encryption schemes we have seen so far are .

If a ciphertext manipulated in a controlled () can be ,

 then the encryption scheme is not CC

not CCA-secure

A-secure

 w

 ay

.

CCA insecurity

kc Enc m

0 1

Example: consider the scheme () , () .

 The adversary chooses any two messages , of equal length.

 Let the challenge ciphertext be , where

 : () , wit

h

k k

k b

Enc m r F r m

m m

r c

c F r m

 {0,1}.

 The adversary modifies , to , , () , which

 is a legitimate ciphertext of .

 Requesting the oracle to decrypt , , the adversary will g

et

 an

d hen

k b

b

b

b

r c r c r f r m

m

r c m

ce know the value of .b

95

 We will see that:

 CPA-secure encryption secure MAC

 CCA-secure encryption

Constructing a CCA-secure encryption scheme

Padding-Oracle Attack:

a concrete example of (partial)

chosen-ciphertext attacks

K&L Section 3.7.2

96

97

 We will attack the CBC-mode encryption scheme that uses

 PKCS#5 padding.

 : block length (in bytes).

 : pad length (in byt 1 255es).

 PKCS#5 padding

 The val

o

 :

ue

The Setting

L

b b L

f (as an 8-bit binary) is repeated times.

 Examples: 0x01, 0x0202, 0x030303, 0x04040404.

 refers to the (w/o

padding).

Message original message

Encod refers to the ed data padded message

b b

 The encoded data is encrypted using CBC-mode encryp

.

. tion

98

 On receiving a ciphertext, the receiver decrypts it to recover the

 encoded data and

checks if the padding is correct.

If , the receiver typically sends back anot cor "ba

 rec pt d

A Padding Oracle

 adding"

 error message (e.g., in Java, javax.crypto.BadPaddingException).

 Such receivers provide the adversary with a

 which may

padding oracle

partial decryption

obe viewed racle as a .

 ciphertext
 Padding Oracle

error (if padding incorrect)

 Using such a padding oracle, the adversary can recover the

 original m ge.

essa

99

1 2

1 2

2 2 1

 Suppose the encoded data is , , unknown to the adversary;

 and the ciphertext is , , , known to the adversary.

 Recall: ()

 a

Modify the encoded data in a controlled fashion

k

m m

IV c c

c F m c

1

2 2 1

1

2 2 1

1 2 1 2

1 2 1 2

nd so () .

 Thus, () . That is,

 , , ,

, , ,

 By modifying the ciphertext, the adversary can modify the

 en

coded da

k

k

Dec

Dec

m F c c

m F c c

IV c c m m

IV c c m m

ta in a controlled fashion and then ask the oracle

 if the padding (of the modified encoded data) is correct.

Cipher block chaining (CBC)

100

1

=
m

101

2

 Example: modifying the 5th byte will result in a padding error.

 0x03 0x03 = 0x33 0x22 0x11 0x44

 In general, to find the pad length, the adversary runs:

0

x03

Find out the pad length

m

b

1

 1

 modify the th byte of

 send the resulting ciphertext to the receiver/oracle

 if receiving a padding error then return : (1)

i L

i c

b L i

for to do

102

2

2

Having known 3, how to recover the byte ?

 =

 = 0x0 0x0 0x0

 Try (how?) every s

0x03

0x03 0x

t

4

r

0

3

4 4

Recover the message byte by byte

b

m x y z

m x

w

w

w iy z

8

38 8 8

1 1

ing {0,1} until there is

 for which , 0x04 0x04

 How: modify to , with 0 0 0 0x03 0x04

 padding e

 and pr

rror

esent the resulting ciphe

o

rtex

,n

i i

i w i w

i

i

c ic

1 2

1 2

t , , to the

 oracle, which after decryption will see , .

iIV c c

m m

103

2

2

8

Having recovered , how to recover ?

 = 0x03 0x03 0x0

 = 0x0 0x0 0x0 0x0

 Try

5

 every string {0,1}

5

5

3

u

5

Recover the message byte by byte

z

z

w

m x y

m

w

x y z i

i

38 8

1 1

1 2

ntil no padding error, then

 0x05 0x05

 How: modify to , with 0 0 0x05 0x03 0x05

 and present the resulting ciphertext , , to the

i i

i

z i z i

c c w

IV c c

i

1 2 oracle, which after decryption will see , .

m m

