Perfectly-Secret Encryption

CSE 5351: Introduction to Cryptography

Reading assignment:

• Read Chapter 2

• You may skip proofs, but are encouraged to read some of them.

Outline

- Definition of encryption schemes
- Shannon's notion of perfect secrecy
- Shannon's Theorems
- Limitions of perfect secrecy
- Perfect indistinguishability

Symmetric-key encryption scheme

- An encryption scheme Π consists of three algorithms *Gen*,
 Enc, *Dec* and three spaces *K*, *M*, *C*.
- K, M, C: key space, message space, ciphertext space.
- Key generation algorithm *Gen* generates keys k according to some distribution (usually uniform distribution).
 We write k ← Gen.
- Encryption algorithm : $c \leftarrow Enc_k(m)$
- Decryption algorithm : $m := Dec_k(c)$
- Note: *Gen* and *Enc* are probabilistic algorithms, *Dec* is deterministic.

- Note: We don't need to explicitly specify *K* and *C* as they are implicitly defined by *Gen* and *Enc*, respectively.
- Correctness requirement: for any $k \in K$ and $m \in M$, $Dec_k(Enc_k(m)) = m$.
- To use the scheme, Alice and Bob run *Gen* to generate a key *k* ∈ *K*, and keep it secret.
- Question: What is the security requirement?

Example encryption scheme

- Consider Caesar's shift cipher with M = {a,b,c,d} represented as {0,1,2,3}.
- Key generation: $k \leftarrow_u \{0, \dots, 25\}.$
- Encryption:
 - Randomly generate a bit $b \leftarrow \{0,1\}$.
 - Let $Enc_k(m) = (m + k + 5b) \mod 26$.
 - I.e., $Enc_k(m) = \begin{cases} (m+k) \mod 26 & \text{with probability } 1/2 \\ (m+k+5) \mod 26 & \text{with probability } 1/2 \end{cases}$
- Decryption: ?

The notion of security

- Consider a ciphertext-only attack, where the adversary is an eavesdropper with a single ciphertext $c \leftarrow Enc_k(m)$.
- Adversary's possible objectives:
 - 1. To recover the secret key *k*.
 - 2. To recover the plaintext *m*.
 - 3. To recover any information about *m*.
- We will adopt and formalize the last one (#3).
- Informally, an encryption scheme is secure if from a ciphertext *c* no adversary can obtain any information about its plaintext *m*.

Shannon's notion of perfect secrecy

- Adversary: an eavesdropper with unlimited computing power and being able to see a single ciphertext.
- Encryption scheme: (*Gen*, *Enc*, *Dec*, *K*, *M*, *C*)
- Envision an experiment:
 - Alice generates a key $K \leftarrow Gen$,
 - picks a message M from the message space M according to some probability distribution, and
 - obtains a ciphertext $C = Enc_{K}(M)$.
- M, K, C are random variables over M, K, C, respectively.

• Notation:

- Pr[M = m] = probability that message m is picked.
- Pr[K = k] = probability that key k is generated by *Gen*.
- Pr[C = c] = probability that c is the ciphertext.
- The distribution of M is a characteristic of M.
- The distribution of K is determined by Gen.
- The distribution of C is induced by *Enc* and depends on the distributions of M and C:

$$\Pr[\mathsf{C}=c] = \sum_{m \in M, k \in K} \Pr[\mathsf{M}=m] \cdot \Pr[\mathsf{K}=k] \cdot \Pr[Enc_k(m)=c]$$

• Conditional probabilities:

•
$$\Pr[\mathsf{C} = c | \mathsf{M} = m] = \sum_{k \in K} \Pr[\mathsf{K} = k] \cdot \Pr[Enc_k(m) = c]$$

•
$$\Pr[\mathsf{M} = m | \mathsf{C} = c] = \frac{\Pr[(\mathsf{M} = m) \land (\mathsf{C} = c)]}{\Pr[\mathsf{C} = c]}$$

$$= \sum_{k \in K} \Pr\left[(\mathsf{M} = m) \land (\mathsf{K} = k) \land (Enc_k(m) = c) \right] / \Pr\left[\mathsf{C} = c\right]$$

$$= \sum_{k \in K} \Pr[\mathsf{M} = m] \cdot \Pr[\mathsf{K} = k] \cdot \Pr[Enc_k(m) = c] / \Pr[\mathsf{C} = c]$$
(M and K and the randomness of *Enc* are assumed to

be independent.)

Example encryption scheme

- Consider Caesar's shift cipher with M = {a,b,c,d} represented as {0,1,2,3}.
- Key generation: $k \leftarrow_u \{0, \dots, 25\}.$

• Encryption: $Enc_k(m) = \begin{cases} (m+k) \mod 26 & \text{with probability } 1/2 \\ (m+k+5) \mod 26 & \text{with probability } 1/2 \end{cases}$

- Assume $\Pr[M = m] = (m+1)/10$.
- Get familiar with these: $\Pr[Enc_k(m) = c], \Pr[Enc_K(m) = c],$

 $\Pr\left[Enc_{\mathsf{K}}(\mathsf{M})=c\right], \ \Pr\left[\mathsf{C}=c\right], \ \Pr\left[\mathsf{C}=c \mid \mathsf{M}=m\right], \ \Pr\left[\mathsf{M}=m \mid \mathsf{C}=c\right]$

• Shannon's Definition of Perfect Scerecy:

An encryption scheme is perfectly secret if for every probability distribution over *M*, every message $m \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$, it holds:

$$\Pr[\mathsf{M} = m \,|\, \mathsf{C} = c] = \Pr[\mathsf{M} = m]$$

• Lemma 1: An encryption scheme is perfectly secret if and only if for all $m, m' \in M$ and $c \in C$, it holds:

$$\Pr[Enc_{\mathsf{K}}(m) = c] = \Pr[Enc_{\mathsf{K}}(m') = c]$$

where
$$\Pr[Enc_{\mathsf{K}}(m) = c] = \sum_{k \in K} \Pr[\mathsf{K} = k] \cdot \Pr[Enc_{k}(m) = c].$$

To show a scheme not perfectly secret, it suffices to show a counterexample, i.e., to construct a distribution over *M*, a message *m* ∈ *M*, and a ciphertext *c* ∈ *C* with Pr[C = *c*] > 0, such that:

$$\Pr[\mathsf{M} = m \,|\, \mathsf{C} = c] \neq \Pr[\mathsf{M} = m]$$

• Or construct two messages $m, m' \in M$ and a $c \in C$ such that $\Pr[Enc_{\kappa}(m) = c] \neq \Pr[Enc_{\kappa}(m') = c]$

Example encryption scheme

- Consider Caesar's shift cipher with M = {a,b,c,d} represented as {0,1,2,3}.
- Key generation: $k \leftarrow_u \{0, \dots, 25\}.$
- Encryption:
 - Randomly generate a bit $b \leftarrow \{0,1\}$.
 - Let $Enc_k(m) = (m + k + 5b) \mod 26$.
- For every $m \in M$, $c \in C$, it holds: $\Pr[Enc_{K}(m) = c] = \Pr[(m + K + 5b) \mod 26 = c]$ $= 1/2 \cdot \Pr[K = (c - m) \mod 26] + 1/2 \cdot \Pr[K = (c - m - 5) \mod 26]$ = 1/26.
- This scheme is perfectly secret by Lemma 1.

Vernam's one-time pad encryption scheme

•
$$M = K = C = \{0,1\}^n$$
, *n* fixed.

Key generation: $k \leftarrow_u \{0,1\}^n$. Encryption: $c := m \oplus k$.

- One-time pad: each key is used only once.
- The scheme is perfectly secret (against eavesdroppers having a single ciphertext). Reasons:
 - $\forall m, c \in \{0,1\}^n$, $Enc_k(m) = c$ iff $k = m \oplus c$.
 - Thus, $\Pr[Enc_{K}(m) = c] = \Pr[K = m \oplus c] = 1/2^{n}$.
 - Apply Lemma 1.

If a pad is used twice

•
$$M = K = C = \{0,1\}^n$$
, *n* fixed.

Key generation: $k \leftarrow \{0,1\}^n$. Encryption: $c := m \oplus k$.

• If a key k is used to encrypt two messages:

 $c := m \oplus k$ and $c' := m' \oplus k$

- From *c* and *c'*, the adversary can tell something about the messages: $m \oplus m' = c \oplus c'$.
- The scheme is not secure against eavesdroppers with multiple ciphertexts.

If a pad is used twice

- We may regard the scheme as having $K = \{0,1\}^n$ and $M = C = \{0,1\}^{2n}$, with encryption algorithm: $Enc_k(m) = m \oplus (k \parallel k).$
- It is not perfectly secret since

$$\Pr\left[\mathsf{M} = 0^n 0^n \mid \mathsf{C} = 0^n 1^n\right] = 0 \neq \Pr\left[\mathsf{M} = 0^n 0^n\right] > 0$$

for the uniform distribution over M.

One-time pad for messages of varying length

•
$$M = C = \{0,1\} \cup \{0,1\}^n$$
, *n* fixed.
 $K = \{0,1\}^n$.

Key generation: $k \leftarrow_u \{0,1\}^n$. Encryption: $c := E_k(m) := m \oplus k$ where if $m \in \{0,1\}$ then only the first bit of k is used.

• Question: Is this scheme perfectly secret?

Shannon's Theorems

- Theorem 1: [a necessary condition for perfect secrecy] If an encryption scheme is perfectly secrect, then $|M| \le |K|$.
- Thus, if $M = \{0,1\}^n$ and $K = \{0,1\}^l$, then $n \le l$, i.e., keys must be at least as long as messages.
- Theorem 2: When |M| = |K| = |C|, the encryption scheme is perfectly secret if and only if both of the following hold:
 - Every key is generated by *Gen* with equal probability 1/|K|;
 - For every $m \in M$ and $c \in C$, there is a unique $k \in K$ such that $Enc_k(m) = c$. (Encrypting a message *m* with different keys *k* will yield different ciphertexts *c*.)

Proof of $|M| \leq |K|$ (Theorem 1)

• Consider the uniform distribution over *M*.

Let *c* be any ciphertext such that $\Pr[C = c] > 0$. Let $M(c) = \{Dec_k(c) : k \in K\}$, the set of all messages that may be encrypted to *c* with non-zero probability. Clearly, $|M(c)| \le |K|$.

- If $M(c) \neq M$, then there is a message $m \in M M(c)$ for which $\Pr[M = m | C = c] = 0 \neq \Pr[M = m]$, contradicting the assumption of perfect secrecy.
- Hence, M(c) = M, and thus $|M(c)| \le |K|$.

Proof of Theorem 2

- Observation: $|M| = |C| \implies Enc$ is deterministic.
- Sufficiency:

The two conditions hold

- \Rightarrow For every $m \in M$ and $c \in C$, $\Pr[Enc_{K}(m) = c] = 1/|K|$
- \Rightarrow For all $m, m' \in M$ and $c \in C$,

 $\Pr[Enc_{\mathsf{K}}(m) = c] = \Pr[Enc_{\mathsf{K}}(m') = c]$

 \Rightarrow Perfect secrecy (by Lemma 1).

- Necessity: Assume |M| = |K| = |C| and perfect secrecy.
 - Consider any arbitrary (but fixed) $c \in C$.
 - Let $K(m) = \{k \in K : Enc_k(m) = c\}$, the set of all keys encryping *m* to *c*. Note: $K(m) \cap K(m') = \emptyset$ if $m \neq m'$.
 - There is an $\overline{m} \in M$ with $\Pr[Enc_{K}(\overline{m}) = c] \neq 0$, since |M| = |C|. By Lemma 1, $\Pr[Enc_{K}(m) = c] \neq 0$ for every $m \in M$. Thus, $|K(m)| \ge 1$ for every $m \in M$.
 - This, together with |M| = |K|, implies |K(m)| = 1.
 - Let k_m be the unique key in K(m) that encrypts m to c.
 - Then, $\Pr[Enc_{\mathsf{K}}(m) = c] = \Pr[\mathsf{K} = k_m].$
 - Since $\Pr[Enc_{\mathsf{K}}(m) = c] = \Pr[Enc_{\mathsf{K}}(m') = c]$ for all $m, m' \in M$, $\Pr[\mathsf{K} = k_m] = \Pr[\mathsf{K} = k_{m'}] = 1/|\mathsf{K}|$ for all $m, m' \in M$.

Applying Shannon's Theorem

- With Shannon's theorem, it is trivial to see that Vernam's one-time pad is perfectly secret.
- It is easy to design another perfectly secret encryption scheme.
- For example, take Caesar's shift cipher:
 - $K = M = C = \{0, 1, ..., 25\} = \{a, b, ..., z\}.$
 - Key generation: $k \leftarrow_u K$.
 - Encryption: $E_k(m) = (m+k) \mod 26$
- Caesar's shift cipher is perfectly secret if it is used to encrypt only one letter.

Is it perfectly secret?

- Suppose we use Caesar's shift cipher to encrypt a message (any sequence of letters), but uniformly randomly generate a new key for each letter.
- Thus, $K = M = C = \{0, 1, ..., 25\}^* = \{a, b, ..., z\}^*$.
- To encrypt a message $m = m_1 m_2 \dots m_t$:
 - Generate a key $k = k_1 k_2 \dots k_t$, with $k_i \leftarrow_u K$ for each *i*.
 - Let $Enc_k(m) = c_1c_2...c_t$, where $c_i = (m_i + k_i) \mod 26$.
- Each plaintext letter m_i is perfectly protected, but not the entire message.

Limitations of Perfect Secrecy

- To achieve perfect secrecy:
 - keys must be as long as messages (if $K = \{0,1\}^l$ and $M = \{0,1\}^n$);
 - a new key must be generated for each message.
- It is desired to use a short key to encrypt multiple messages.
 - To this end, we need to relax the security requirement.
 - Unfortunately, it is hard to relax the conditions of perfect secrecy.
 - We will define a different notion of security that is equivalent to perfect secrecy and can be easily relaxed.

Perfect Indistinguishability Experiment PrivK^{eav}_{A,II}

- Imagine an experiment on an encryption scheme Π :
 - The adversary A chooses two messages m₀, m₁ ∈ M, not necessarily of the same length.
 - Bob generates a key k ← Gen and a bit b ←_u {0,1}.
 He computes and gives the ciphertext c ← Enc_k(m_b) to A.
 (c is called the challenge ciphertext.)
 - A outputs a bit b', triving to tell whether c is the encryption of m₀ or m₁.
 - The output, $\operatorname{PrivK}_{A,\Pi}^{eav}$, of the experiment is 1 iff b = b'(i.e., A succeeds.)

Definition of Perfect Indistinguishability

- Encryption scheme: $\Pi = (Gen, Enc, Dec)$ with message space M.
- Adversary: an eavesdropper with unlimited computing power.
- We model the adversary as a probabilistic algorithm A that on input $m_0, m_1 \in M$ and $c \in C$ outputs a bit $b' \in \{0,1\}$.
- An encryption scheme is perfectly indistinguishable if for every adversary A and every two messages $m_0, m_1 \in M$,

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(m_0, m_1) = 1\right] \leq \frac{1}{2}$$

or, equivalently, for every A and every two $m_0, m_1 \in M$,

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(m_0, m_1) = 1\right] = \frac{1}{2}$$

- Some authors write $\Pr\left[\operatorname{PrivK}_{A,\Pi}^{eav}(m_0, m_1) = 1\right]$ as $\Pr\left[A\left(m_0, m_1, Enc_k(m_b)\right) = b: b \leftarrow_u \{0,1\}, k \leftarrow_{Gen} K\right]$ where $A\left(m_0, m_1, Enc_k(m_b)\right)$ indicate the output of A on input $m_0, m_1, Enc_k(m_b)$.
- Thus, an encryption scheme is perfectly indistinguishable if for every adversary A and every two messages m₀, m₁ ∈ M,

•
$$\Pr\left[A\left(m_0, m_1, Enc_k(m_b)\right) = b: b \leftarrow_u \{0, 1\}, k \leftarrow Gen\right] \leq \frac{1}{2}$$

or, equivalently,

•
$$\Pr\left[A\left(m_0, m_1, Enc_k(m_0)\right) = 1: k \leftarrow Gen\right]$$

= $\Pr\left[A\left(m_0, m_1, Enc_k(m_1)\right) = 1: k \leftarrow Gen\right]$

Remark

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(m_0, m_1) = 1\right]$$

$$= \Pr\left[A\left(m_0, m_1, E_k(m_b)\right) = b : b \leftarrow_u \{0, 1\}, k \leftarrow Gen\right]$$

$$= \sum_{\substack{b \in \{0,1\}\\k \in K}} \Pr[b] \cdot \Pr[k] \cdot \Pr\left[A\left(m_0, m_1, Enc_k(m_b)\right) = b\right]$$

$$= \sum_{\substack{b \in \{0,1\}\\k \in K, c \in C}} \Pr[b] \cdot \Pr[k] \cdot \Pr\left[\frac{Enc_k(m_b) = c}{e}\right] \cdot \Pr\left[A(m_0, m_1, c) = b\right]$$

$$= \sum_{\substack{b \in \{0,1\}\\c \in C}} \Pr[b] \cdot \Pr\left[\frac{Enc_{\mathsf{K}}(m_b) = c}{e}\right] \cdot \Pr\left[A\left(m_0, m_1, c\right) = b\right]$$

• $A(m_0, m_1, Enc_k(m_b)) =$ output of A on input $m_0, m_1, Enc_k(m_b)$.

Equivalence of perfect secrecy and perfect indistinguishability

• Theorem: An encryption scheme is perfectly secret if and only if it is perfectly indistinguishable.

Perfect secrecy \Rightarrow perfect indistinguishability

• If the encryption scheme is perfectly secret, then

 $\Pr\left[Enc_{\mathsf{K}}(m_0)=c\right]=\Pr\left[Enc_{\mathsf{K}}(m_1)=c\right] \text{ for all } m_0, m_1 \in M, \ c \in C.$

•
$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(m_0, m_1) = 1\right] \qquad \left(=\Pr\left[A \text{ wins}\right]\right)$$

$$= \sum_{i=0,1; c \in C} \Pr[b=i, Enc_{\mathsf{K}}(m_i) = c, A(m_0, m_1, c) = i]$$

$$= \sum_{c \in C} \sum_{i=0,1} \Pr\left[b=i\right] \cdot \Pr\left[Enc_{\mathsf{K}}(m_i)=c\right] \cdot \Pr\left[A(m_0,m_1,c)=i\right]$$

$$= \frac{1}{2} \sum_{c \in C} \left(\Pr\left[Enc(m_0) = c \right] \cdot \sum_{i=0,1} \Pr\left[A(m_0, m_1, c) = i \right] \right) = \frac{1}{2}$$

Perfect secrecy <= perfect indistinguishability

- If not perfectly secret, then there exist $m_0, m_1 \in M$ such that $\Pr\left[Enc_{\mathsf{K}}(m_0) = c^*\right] \neq \Pr\left[Enc_{\mathsf{K}}(m_1) = c^*\right]$ for some ciphertext $c^* \in C$.
- Define an adversary *A* as follows.
 - A chooses the above two messages m_0, m_1 .
 - On a given challenge ciphertext c,

$$A(m_0, m_1, c) = \begin{cases} 0 & \text{if } \Pr[Enc_{\mathsf{K}}(m_0) = c] > \Pr[Enc_{\mathsf{K}}(m_1) = c] \\ 1 & \text{if } \Pr[Enc_{\mathsf{K}}(m_0) = c] < \Pr[Enc_{\mathsf{K}}(m_1) = c] \\ b' \leftarrow_u \{0, 1\} & \text{otherwise} \end{cases}$$

- It can be verified that A succeeds with probability >1/2.
- The scheme is not perfectly indistinguishable.