## Perfectly-Secret Encryption

CSE 5351: Introduction to Cryptography
Reading assignment:

- Read Chapter 2
- You may skip proofs, but are encouraged
to read some of them.


## Outline

- Definition of encryption schemes
- Shannon's notion of perfect secrecy
- Shannon's Theorems
- Limitions of perfect secrecy
- Perfect indistinguishability


## Symmetric-key encryption scheme

- An encryption scheme $\Pi$ consists of three algorithms Gen, Enc, Dec and three spaces $K, M, C$.
- $K, M, C$ : key space, message space, ciphertext space.
- Key generation algorithm Gen generates keys $k$ according to some distribution (usually uniform distribution). We write $k \leftarrow$ Gen.
- Encryption algorithm: $c \leftarrow E n c_{k}(m)$
- Decryption algorithm: $m:=\operatorname{Dec}_{k}(c)$
- Note: Gen and Enc are probabilistic algorithms, Dec is deterministic.
- Note: We don't need to explicitly specify $K$ and $C$ as they are implicitly defined by Gen and Enc, respectively.
- Correctness requirement: for any $k \in K$ and $m \in M$,

$$
\operatorname{Dec}_{k}\left(E n c_{k}(m)\right)=m
$$

- To use the scheme, Alice and Bob run Gen to generate a key $k \in K$, and keep it secret.
- Question: What is the security requirement?


## Example encryption scheme

- Consider Caesar's shift cipher with $M=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ represented as $\{0,1,2,3\}$.
- Key generation: $k \leftarrow_{u}\{0, \ldots, 25\}$.
- Encryption:
- Randomly generate a bit $b \leftarrow\{0,1\}$.
- Let $E n c_{k}(m)=(m+k+5 b) \bmod 26$.
- I.e., $E n c_{k}(m)= \begin{cases}(m+k) \bmod 26 & \text { with probability } 1 / 2 \\ (m+k+5) \bmod 26 & \text { with probability } 1 / 2\end{cases}$
- Decryption: ?


## The notion of security

- Consider a ciphertext-only attack, where the adversary is an eavesdropper with a single ciphertext $c \leftarrow E n c_{k}(m)$.
- Adversary's possible objectives:

1. To recover the secret key $k$.
2. To recover the plaintext $m$.
3. To recover any information about $m$.

- We will adopt and formalize the last one (\#3).
- Informally, an encryption scheme is secure if from a ciphertext $c$ no adversary can obtain any information about its plaintext $m$.


## Shannon's notion of perfect secrecy

- Adversary: an eavesdropper with unlimited computing power and being able to see a single ciphertext.
- Encryption scheme: (Gen, Enc, Dec, K, M, C)
- Envision an experiment:
- Alice generates a key $\mathrm{K} \leftarrow$ Gen,
- picks a message M from the message space $M$ according to some probability distribution, and
- obtains a ciphertext $\mathrm{C}=E n c_{\mathrm{K}}(\mathrm{M})$.
- M, K, C are random variables over $M, K, C$, respectively.
- Notation:
- $\operatorname{Pr}[\mathrm{M}=m]=$ probability that message $m$ is picked.
- $\operatorname{Pr}[\mathrm{K}=k]=$ probability that key $k$ is generated by Gen.
- $\operatorname{Pr}[\mathrm{C}=c]=$ probability that $c$ is the ciphertext.
- The distribution of $M$ is a characteristic of $M$.
- The distribution of K is determined by Gen.
- The distribution of C is induced by Enc and depends on the distributions of $M$ and $C$ :

$$
\operatorname{Pr}[\mathrm{C}=c]=\sum_{m \in M, k \in K} \operatorname{Pr}[\mathrm{M}=m] \cdot \operatorname{Pr}[\mathrm{K}=k] \cdot \operatorname{Pr}\left[E n c_{k}(m)=c\right]
$$

- Conditional probabilities:
- $\operatorname{Pr}[\mathrm{C}=c \mid \mathrm{M}=m]=\sum_{k \in K} \operatorname{Pr}[\mathrm{~K}=k] \cdot \operatorname{Pr}\left[\operatorname{Enc}_{k}(m)=c\right]$
- $\operatorname{Pr}[\mathrm{M}=m \mid \mathrm{C}=c]=\frac{\operatorname{Pr}[(\mathrm{M}=m) \wedge(\mathrm{C}=c)]}{\operatorname{Pr}[\mathrm{C}=c]}$

$$
\begin{aligned}
& =\sum_{k \in K} \operatorname{Pr}\left[(\mathrm{M}=m) \wedge(\mathrm{K}=k) \wedge\left(E n c_{k}(m)=c\right)\right] / \operatorname{Pr}[\mathrm{C}=c] \\
& =\sum_{k \in K} \operatorname{Pr}[\mathrm{M}=m] \cdot \operatorname{Pr}[\mathrm{K}=k] \cdot \operatorname{Pr}\left[E n c_{k}(m)=c\right] / \operatorname{Pr}[\mathrm{C}=c]
\end{aligned}
$$

( M and K and the randomness of Enc are assumed to be independent.)

## Example encryption scheme

- Consider Caesar's shift cipher with $M=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ represented as $\{0,1,2,3\}$.
- Key generation: $\quad k \leftarrow_{u}\{0, \ldots, 25\}$
- Encryption: $E n c_{k}(m)= \begin{cases}(m+k) \bmod 26 & \text { with probability } 1 / 2 \\ (m+k+5) \bmod 26 & \text { with probability } 1 / 2\end{cases}$
- Assume $\operatorname{Pr}[\mathrm{M}=m]=(m+1) / 10$.
- Get familiar with these: $\operatorname{Pr}\left[E n c_{k}(m)=c\right], \operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]$,
$\operatorname{Pr}\left[E n c_{\mathrm{K}}(\mathrm{M})=c\right], \operatorname{Pr}[\mathrm{C}=c], \operatorname{Pr}[\mathrm{C}=c \mid \mathrm{M}=m], \operatorname{Pr}[\mathrm{M}=m \mid \mathrm{C}=c]$
- Shannon's Definition of Perfect Scerecy:

An encryption scheme is perfectly secret if for every probability distribution over $M$, every message $m \in M$, and every ciphertext $c \in C$ for which $\operatorname{Pr}[\mathrm{C}=c]>0$, it holds:

$$
\operatorname{Pr}[\mathrm{M}=m \mid \mathrm{C}=c]=\operatorname{Pr}[\mathrm{M}=m]
$$

- Lemma 1: An encryption scheme is perfectly secret if and only if for all $m, m^{\prime} \in M$ and $c \in C$, it holds:

$$
\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m^{\prime}\right)=c\right]
$$

where $\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\sum_{k \in K} \operatorname{Pr}[\mathrm{~K}=k] \cdot \operatorname{Pr}\left[E n c_{k}(m)=c\right]$.

- To show a scheme not perfectly secret, it suffices to show a counterexample, i.e., to construct a distribution over $M$, a message $m \in M$, and a ciphertext $c \in C$ with $\operatorname{Pr}[\mathrm{C}=c]>0$, such that:

$$
\operatorname{Pr}[\mathrm{M}=m \mid \mathrm{C}=c] \neq \operatorname{Pr}[\mathrm{M}=m]
$$

- Or construct two messages $m, m^{\prime} \in M$ and a $c \in C$ such that

$$
\operatorname{Pr}\left[\operatorname{Enc}_{\mathrm{K}}(m)=c\right] \neq \operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m^{\prime}\right)=c\right]
$$

## Example encryption scheme

- Consider Caesar's shift cipher with $M=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ represented as $\{0,1,2,3\}$.
- Key generation: $k \leftarrow{ }_{u}\{0, \ldots, 25\}$.
- Encryption:
- Randomly generate a bit $b \leftarrow\{0,1\}$.
- Let $E n c_{k}(m)=(m+k+5 b) \bmod 26$.
- For every $m \in M, c \in C$, it holds:

$$
\begin{aligned}
& \operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\operatorname{Pr}[(m+\mathrm{K}+5 b) \bmod 26=c] \\
& =1 / 2 \cdot \operatorname{Pr}[\mathrm{~K}=(c-m) \bmod 26]+1 / 2 \cdot \operatorname{Pr}[\mathrm{~K}=(c-m-5) \bmod 26] \\
& =1 / 26 .
\end{aligned}
$$

- This scheme is perfectly secret by Lemma 1.


## Vernam's one-time pad encryption scheme

- $M=K=C=\{0,1\}^{n}, n$ fixed.

Key generation: $k \leftarrow_{u}\{0,1\}^{n}$.
Encryption: $\quad c:=m \oplus k$.

- One-time pad: each key is used only once.
- The scheme is perfectly secret (against eavesdroppers having a single ciphertext). Reasons:
- $\forall m, c \in\{0,1\}^{n}, E n c_{k}(m)=c$ iff $k=m \oplus c$.
- Thus, $\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\operatorname{Pr}[\mathbf{K}=m \oplus c]=1 / 2^{n}$.
- Apply Lemma1.


## If a pad is used twice

- $M=K=C=\{0,1\}^{n}, n$ fixed.

Key generation: $k \leftarrow\{0,1\}^{n}$.
Encryption: $\quad c:=m \oplus k$.

- If a key $k$ is used to encrypt two messages:

$$
c:=m \oplus k \quad \text { and } \quad c^{\prime}:=m^{\prime} \oplus k
$$

- From $c$ and $c^{\prime}$, the adversary can tell something about the messages: $m \oplus m^{\prime}=c \oplus c^{\prime}$.
- The scheme is not secure against eavesdroppers with multiple ciphertexts.


## If a pad is used twice

- We may regard the scheme as having $K=\{0,1\}^{n}$ and $M=C=\{0,1\}^{2 n}$, with encryption algorithm:

$$
\operatorname{Enc}_{k}(m)=m \oplus(k \| k) .
$$

- It is not perfectly secret since
$\operatorname{Pr}\left[\mathrm{M}=0^{n} 0^{n} \mid \mathrm{C}=0^{n} 1^{n}\right]=0 \neq \operatorname{Pr}\left[\mathrm{M}=0^{n} 0^{n}\right]>0$
for the uniform distribution over $M$.

One-time pad for messages of varying length

- $M=C=\{0,1\} \cup\{0,1\}^{n}, n$ fixed.
$K=\{0,1\}^{n}$.
Key generation: $k \leftarrow_{u}\{0,1\}^{n}$.
Encryption: $\quad c:=E_{k}(m):=m \oplus k$ where if $m \in\{0,1\}$ then only the first bit of $k$ is used.
- Question: Is this scheme perfectly secret?


## Shannon's Theorems

- Theorem 1: [a necessary condition for perfect secrecy] If an encryption scheme is perfectly secrect, then $|M| \leq|K|$.
- Thus, if $M=\{0,1\}^{n}$ and $K=\{0,1\}^{l}$, then $n \leq l$, i.e., keys must be at least as long as messages.
- Theorem 2: When $|M|=|K|=|C|$, the encryption scheme is perfectly secret if and only if both of the following hold:
- Every key is generated by Gen with equal probability $1 /|K|$;
- For every $m \in M$ and $c \in C$, there is a unique $k \in K$ such that $E n c_{k}(m)=c$. (Encrypting a message $m$ with different keys $k$ will yield different ciphertexts $c$.)


## Proof of $|M| \leq|K|$ (Theorem 1)

- Consider the uniform distribution over $M$.

Let $c$ be any ciphertext such that $\operatorname{Pr}[\mathrm{C}=c]>0$.
Let $M(c)=\left\{\operatorname{Dec}_{k}(c): k \in K\right\}$, the set of all messages that may be encrypted to $c$ with non-zero probability.
Clearly, $|M(c)| \leq|K|$.

- If $M(c) \neq M$, then there is a message $m \in M-M(c)$ for which $\operatorname{Pr}[\mathrm{M}=m \mid \mathrm{C}=c]=0 \neq \operatorname{Pr}[\mathrm{M}=m]$, contradicting the assumption of perfect secrecy.
- Hence, $M(c)=M$, and thus $|M(c)| \leq|K|$.


## Proof of Theorem 2

- Observation: $|M|=|C| \Rightarrow E n c$ is deterministic.
- Sufficiency:

The two conditions hold
$\Rightarrow$ For every $m \in M$ and $c \in C, \operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=1 /|K|$
$\Rightarrow$ For all $m, m^{\prime} \in M$ and $c \in C$,
$\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m^{\prime}\right)=c\right]$
$\Rightarrow$ Perfect secrecy (by Lemma 1).

- Necessity: Assume $|M|=|K|=|C|$ and perfect secrecy.
- Consider any arbitrary (but fixed) $c \in C$.
- Let $K(m)=\left\{k \in K: E n c_{k}(m)=c\right\}$, the set of all keys encryping $m$ to $c$. Note: $K(m) \cap K\left(m^{\prime}\right)=\varnothing$ if $m \neq m^{\prime}$.
- There is an $\bar{m} \in M$ with $\operatorname{Pr}\left[E n c_{\mathrm{K}}(\bar{m})=c\right] \neq 0$, since $|M|=|C|$.

By Lemma $1, \operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right] \neq 0$ for every $m \in M$. Thus, $|K(m)| \geq 1$ for every $m \in M$.

- This, together with $|M|=|K|$, implies $|K(m)|=1$.
- Let $k_{m}$ be the unique key in $K(m)$ that encrypts $m$ to $c$.
- Then, $\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\operatorname{Pr}\left[\mathrm{K}=k_{m}\right]$.
- Since $\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=c\right]=\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m^{\prime}\right)=c\right]$ for all $m, m^{\prime} \in M$, $\operatorname{Pr}\left[\mathrm{K}=k_{m}\right]=\operatorname{Pr}\left[\mathrm{K}=k_{m^{\prime}}\right]=1 /|K|$ for all $m, m^{\prime} \in M$.


## Applying Shannon's Theorem

- With Shannon's theorem, it is trivial to see that Vernam's one-time pad is perfectly secret.
- It is easy to design another perfectly secret encryption scheme.
- For example, take Caesar's shift cipher:
- $K=M=C=\{0,1, \ldots, 25\}=\{a, b, \ldots, z\}$.
- Key generation: $k \leftarrow{ }_{u} K$.
- Encryption: $E_{k}(m)=(m+k) \bmod 26$
- Caesar's shift cipher is perfectly secret if it is used to encrypt only one letter.


## Is it perfectly secret?

- Suppose we use Caesar's shift cipher to encrypt a message (any sequence of letters), but uniformly randomly generate a new key for each letter.
- Thus, $K=M=C=\{0,1, \ldots, 25\}^{*}=\{a, b, \ldots, z\}^{*}$.
- To encrypt a message $m=m_{1} m_{2} \ldots m_{t}$ :
- Generate a key $k=k_{1} k_{2} \ldots k_{t}$, with $k_{i} \leftarrow{ }_{u} K$ for each $i$.
- Let $E n c_{k}(m)=c_{1} c_{2} \ldots c_{t}$, where $c_{i}=\left(m_{i}+k_{i}\right) \bmod 26$.
- Each plaintext letter $m_{i}$ is perfectly protected, but not the entire message.


## Limitations of Perfect Secrecy

- To achieve perfect secrecy:
- keys must be as long as messages (if $K=\{0,1\}^{l}$ and $M=\{0,1\}^{n}$ );
- a new key must be generated for each message.
- It is desired to use a short key to encrypt multiple messages.
- To this end, we need to relax the security requirement.
- Unfortunately, it is hard to relax the conditions of perfect secrecy.
- We will define a different notion of security that is equivalent to perfect secrecy and can be easily relaxed.


## Perfect Indistinguishability Experiment PrivK ${ }_{A, \Pi}^{\mathrm{eav}}$

- Imagine an experiment on an encryption scheme $\Pi$ :
- The adversary $A$ chooses two messages $m_{0}, m_{1} \in M$, not necessarily of the same length.
- Bob generates a key $k \leftarrow$ Gen and a bit $b \leftarrow_{u}\{0,1\}$. He computes and gives the ciphertext $c \leftarrow E \operatorname{Enc}_{k}\left(m_{b}\right)$ to $A$. ( $c$ is called the challenge ciphertext.)
- $A$ outputs a bit $b^{\prime}$, triying to tell whether $c$ is the encryption of $m_{0}$ or $m_{1}$.
- The output, PrivK ${ }_{A, \Pi}^{\text {eav }}$, of the experiment is 1 iff $b=b^{\prime}$ (i.e., $A$ succeeds.)


## Definition of Perfect Indistinguishability

- Encryption scheme: $\Pi=($ Gen, Enc, Dec $)$ with message space $M$.
- Adversary: an eavesdropper with unlimited computing power.
- We model the adversary as a probabilistic algorithm $A$ that on input $m_{0}, m_{1} \in M$ and $c \in C$ outputs a bit $b^{\prime} \in\{0,1\}$.
- An encryption scheme is perfectly indistinguishable if for every adversary $A$ and every two messages $m_{0}, m_{1} \in M$,

$$
\operatorname{Pr}\left[\operatorname{PrivK}_{A, \Pi}^{\mathrm{eav}}\left(m_{0}, m_{1}\right)=1\right] \leq \frac{1}{2}
$$

or, equivalently, for every $A$ and every two $m_{0}, m_{1} \in M$,

$$
\operatorname{Pr}\left[\operatorname{PrivK} K_{A, \Pi}^{\text {eav }}\left(m_{0}, m_{1}\right)=1\right]=\frac{1}{2}
$$

- Some authors write $\operatorname{Pr}\left[\operatorname{PrivK}_{A, \Pi}^{\text {eav }}\left(m_{0}, m_{1}\right)=1\right]$ as
$\operatorname{Pr}\left[A\left(m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)\right)=b: b \leftarrow_{u}\{0,1\}, k \leftarrow_{\text {Gen }} K\right]$ where $A\left(m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)\right)$ indicate the output of $A$ on input $m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)$.
- Thus, an encryption scheme is perfectly indistinguishable if for every adversary $A$ and every two messages $m_{0}, m_{1} \in M$, - $\operatorname{Pr}\left[A\left(m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)\right)=b: b \leftarrow_{u}\{0,1\}, k \leftarrow\right.$ Gen $] \leq \frac{1}{2}$ or, equivalently,
- $\operatorname{Pr}\left[A\left(m_{0}, m_{1}, \operatorname{Enc}_{k}\left(m_{0}\right)\right)=1: k \leftarrow G e n\right]$

$$
=\operatorname{Pr}\left[A\left(m_{0}, m_{1}, E n c_{k}\left(m_{1}\right)\right)=1: k \leftarrow G e n\right]
$$

## Remark

$$
\begin{aligned}
\operatorname{Pr} & {\left[\operatorname{PrivK_{A,\Pi }^{\text {aav}}(m_{0},m_{1})=1]}\right.} \\
& =\operatorname{Pr}\left[A\left(m_{0}, m_{1}, E_{k}\left(m_{b}\right)\right)=b: b \leftarrow_{u}\{0,1\}, k \leftarrow G e n\right] \\
& =\sum_{\substack{b \in[0,1] \\
k \in K}} \operatorname{Pr}[b] \cdot \operatorname{Pr}[k] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)\right)=b\right] \\
& =\sum_{\substack{b \in[0,1] \\
k \in K, c \in C}} \operatorname{Pr}[b] \cdot \operatorname{Pr}[k] \cdot \operatorname{Pr}\left[E n c_{k}\left(m_{b}\right)=c\right] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, c\right)=b\right] \\
& =\sum_{\substack{b \in\{0,1\} \\
c \in C}} \operatorname{Pr}[b] \cdot \operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{b}\right)=c\right] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, c\right)=b\right]
\end{aligned}
$$

- $A\left(m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)\right)=$ output of $A$ on input $m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)$.


## Equivalence of perfect secrecy and perfect indistinguishability

- Theorem: An encryption scheme is perfectly secret if and only if it is perfectly indistinguishable.


## Perfect secrecy $\Rightarrow$ perfect indistinguishability

- If the encryption scheme is perfectly secret, then

$$
\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{0}\right)=c\right]=\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{1}\right)=c\right] \text { for all } m_{0}, m_{1} \in M, c \in C .
$$

$$
\operatorname{Pr}\left[\operatorname{PrivK} \mathrm{K}_{A, \Pi}^{\text {eav }}\left(m_{0}, m_{1}\right)=1\right] \quad(=\operatorname{Pr}[A \text { wins }])
$$

$$
=\sum_{i=0,1 ;} \operatorname{ccc}, \operatorname{Pr}\left[b=i, E n c_{\mathrm{K}}\left(m_{i}\right)=c, A\left(m_{0}, m_{1}, c\right)=i\right]
$$

$$
=\sum_{c \in C} \sum_{i=0,1} \operatorname{Pr}[b=i] \cdot \operatorname{Pr}\left[E n c_{\mathrm{k}}\left(m_{i}\right)=c\right] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, c\right)=i\right]
$$

$$
=\frac{1}{2} \sum_{c \in C}\left(\operatorname{Pr}\left[E n c\left(m_{0}\right)=c\right] \cdot \sum_{i=0,1} \operatorname{Pr}\left[A\left(m_{0}, m_{1}, c\right)=i\right]\right)=\frac{1}{2}
$$

## Perfect secrecy $\Leftarrow$ perfect indistinguishability

- If not perfectly secret, then there exist $m_{0}, m_{1} \in M$ such that

$$
\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{0}\right)=c^{*}\right] \neq \operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{1}\right)=c^{*}\right] \text { for some ciphertext } c^{*} \in C .
$$

- Define an adversary $A$ as follows.
- $A$ chooses the above two messages $m_{0}, m_{1}$.
- On a given challenge ciphertext $c$,

$$
A\left(m_{0}, m_{1}, c\right)= \begin{cases}0 & \text { if } \operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{0}\right)=c\right]>\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{1}\right)=c\right] \\ 1 & \text { if } \operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{0}\right)=c\right]<\operatorname{Pr}\left[E n c_{\mathrm{K}}\left(m_{1}\right)=c\right] \\ b^{\prime} \leftarrow_{u}\{0,1\} & \text { otherwise }\end{cases}
$$

- It can be verified that $A$ succeeds with probability $>1 / 2$.
- The scheme is not perfectly indistinguishable.

