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Perfectly-Secret Encryption 

CSE 5351: Introduction to Cryptography 

Reading assignment: 

•  Read Chapter 2 

• You may skip proofs, but are encouraged 

to read some of them. 
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 Definition of encryption schemes

 Shannon's notion of perfect secrecy

 Shannon's Theorems

 Limitions of p

 

 

 

 

 

erfect secrecy

 Perfect indistinguishability

 

Outline










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 An encryption scheme  consists of three algorithms ,

    ,  and three spaces ,  ,  .

 ,  ,  :  key space,  message space,  ciphertext space.

 Key generation

 

 

 

Symmetric-key encryption scheme

Gen

Enc Dec K M C

K M C





 algorithm  generates keys  according

    to some distribution (usually uniform distribution).  

    We write .

 Encryption algorithm :      ( )

 Decryption algorithm :      : (

N 

 

 

 o

)

k

k

Gen k

k Gen

c Enc m

m Dec c













  and  are probabilistic algorithms,  is

    deterministic.

te: Gen Enc Dec
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 

 We don't need to explicitly specify  and  as they

   are implicitly defined by  and , respectively. 

 Correctness requirement:  for any  and ,  

      

Note

        ( ) .

 T

:

o

 

 

 

 

 

k k

K C

Gen Enc

k K m M

Dec Enc m m

 









use the scheme,  Alice and Bob run  to generate 

    a key ,  an

Question:

d keep it secret. 

   What is the security requirement? 

Gen

k K


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Caesar's shift cipher with {a,b,c,d}  

    represented as {0,1,

 Consider 

 Key generation:

2,3}. 

{0, ,2    .

 Encry

 

 

 ption: 

      Randomly generate a bit 

 

5}

{0,1

   

}.

Example encryption scheme

uk

b

M











  Let ( ) ( 5 )mod 26.

( )mod 26 with probability 1 2
      I.e., ( )

( 5)mod 26 with probability 1 2

 Decryption: ? 

k

k

Enc m m k b

m k
Enc m

m k

  


 






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 Consider a ciphertext-only attack, where the adversary is an

    eavesdropper with a  ciphertext ( ). 

 Adversary's possibl

single

 

e objectives:  

      To recover s the

 

1. e

 

The notion of security

kc Enc m







.

     To recover the .

     To recover .

 We will adopt and formalize the last one (#3).

 Inform

cret key 

ally, an 

 2.

enc

plaint

ryptio

ext 

any information a

n scheme is

bout 

secu  if fr

 

o

 

m

3

 re a i r

.

e c ph

k

m

m



 text

     no adversary can obtain any information about its plaintext .c m



7 

 Adversary:  an eavesdropper with unlimited computing power

    and being able to see a  

 

 

ciphertext.

 Encryption scheme: ( ,  ,  ,  ,  ,  )

 Envisio n

single

Shannon's notion of perfect secrecy 

Gen Enc Dec K M C





  an experiment: 

    Alice generates a key ,  

    picks a message  from the message space  according to

       some probability distribution, a

  

  

  

nd 

    obtains a ciphertext ( ).

 ,   

Gen

M

Enc





 K

K

M

C M

M ,  are random variables over ,  ,  ,  respectively.M K CK C 
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     Pr[ ] probability that message  is picked.

     Pr[ ] probability that key  is generated by .

     Pr[ ] probability that  is the ciphertext.

      The distributio

Notation:  

 

 

f

 

n o

m m

k k Gen

c c



 

 

 

M

K

C

 is a characteristic of .

      The distribution of  is determined by .

      The distribution of  is induced by  and depends on 

        the distributions of  and :  

       Pr[ ] Pr[ ]

M

Gen

Enc

c m   

M

K

C

M C

C M    
, 

Pr Pr ( )k

m M k K

k Enc m c
 

   K
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   

 
 

 

   

       

 

 

      Pr |   Pr[ ] Pr ( )

Pr ( ) ( )
      

Conditio

Pr |   
Pr

       Pr ( ) ( ) ( ( ) )
Pr

       

nal probabilities:  

Pr Pr Pr ( )
Pr
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c m k Enc m c

m c
m c

c

m k Enc m c
c

m k Enc m c
c







     

  
  



     


    












C M K

M C
M C

C

M K
C

M K
C

       (  and  and the randomness of  are assumed to

              be independent.)

EncM K
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Caesar's shift cipher with {a,b,c,d}  

    represented as {0,1,

 Consider 

 Key generation:    .

( ) mod 26 with probability 1 2
 Encryption:  ( )

( 5

2,3}. 

{0, ,25}

 

 

 

Example encryption scheme

u

k

k

m k
Enc m

m k

M











 
 

 

   

       

) mod 26 with probability 1 2

 Assume Pr ( 1) 10.

 Get familiar with these:     Pr ( ) ,  Pr ( ) ,

    Pr ( ) ,  Pr ,  Pr |

 

 

,  Pr |

k

m m

Enc m c Enc m c

Enc c c c m m c





  

 

  



  



K

K C M M C

M

M C
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ever

  

    An encryption scheme is  if for  probability

    distribution o

Shannon's Definition o

ver , every message

f Perfect 

 ,  a

Scerecy:

perfec

nd every ciphertext

     for which 

tly secret

 

y

 

Pr

M m M

c C







C 

   

0,  it holds:

                    Pr |   Pr

   An encryption scheme is perfectly secret if and 

    only if for all ,   and ,  it holds:             

 

 

Lemm

                    Pr

1:

(

a 

c

m c m

m m M c C

Enc m



 





 

 

K

M C M

   

   
 

) Pr ( )  

    where Pr ( ) Pr[ ] Pr ( ) .k

k K

c Enc m c

Enc m c k Enc m c


  

    

K

K K
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 

 it suffices to show a

    counterexample, i.e., to construct a distribution over , 

    a message ,  and a cipher

not

tex

To show a scheme  perfe

t  with Pr 0,  

    such that:

 

ctly secret,

   

  

   

M

m M c C c 



  C

   

   

             Pr |   Pr

 Or construct two messages ,   and a  such that

                    Pr ( )   r  

 

P ( )

m c m

m m M c C

Enc m c Enc m c



   

 

  K K

M C M
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Caesar's shift cipher with {a,b,c,d}  

    represented as {0,1,

 Consider 

 Key generation: 

2,3}. 

{0, ,25   .

 Encryption:      

      Randomly generate a b

}

{0,1}.

 

 

i  

 

t

Example encryption scheme

u

b

M

k 









   

   

      Let ( ) ( 5 ) mod 26.

 For every , ,  it holds:

    Pr ( )  Pr ( 5 )mod 26

    1 2 Pr ( )mod 26 1 2 Pr ( 5) mod 26

    1 26.

 This scheme is perfectly secret by Lem

 

ma 1. 

 

 

 

kEnc m m k b

m M c C

Enc m c m b c

c m c m

  

 

   

      













K K

K K
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 

 

 0,1 ,  .

Key generation:   0,1 .

Encryption:         : .

 One-time pad:  each key is used only once.

 The scheme is p

 

    

 

 fixed

erfect

   

 

 ly secre

Vernam's one-time pad encryption scheme

n

n

u

M K C

k

c m k

n   





 



 

   

t (against 

    having a  ciphertext).  Reasons:

     , 0,1 ,  ( )  iff . 

     Thus, 

eavesdroppers

single

Pr ( ) Pr 1 2 .

     Apply  Lemma1.

n

k

n

m c Enc m c k m c

Enc m c m c

    

    K K
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 

 

 0,1 ,  .

Key generation:   0,1 .

Encryption:         : .

 If a key  is used to encrypt two messages:

                :    and   :

 fixe 

    

    

 

 From 

d

  

If a pad is used twice

n

n

M K C

k

c m k

k

c m k c k

n

m

c

  



 

  











and ,  the adversary can tell something about

    the messages:  .

 The scheme is  against eavesdroppers with

    

not secu

 cipher

re

multipl texts  e .

 

c

m m c c



   


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 

 
2

 We may regard the scheme as having 0,1  and

    0,1 ,  with encryption algorithm:

                  ( ) ( ).

 It is not perfectly secret since  

    Pr 0 0 | 0

 

1

 

If a pad is used twice

n

n

k

n n n

K

M C

Enc m m k k



 











M C 0 Pr 0 0 0

    for the uniform distribution over .

n n n

M

         M
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   

 

 

 

 0,1 0,1 ,   fixed.

0,1 .

Key generation:   0,1 .

Encryption:      

 

    

    

    : ( ) :

    where if 0,1  then only the first bit of  is 

 

u e

  

s

One-time pad for messages of varying length

n

n

n

u

k

M C n

K

k

c E m m k

m k

  





  

 d.

  Is this scheme perfectly sQuest ecretio ?

 

n: 

   


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   [a necessary condition for perfect secrecy]

    If an encryption scheme is perfectly secrect, then .

  Thus, if {0,1}  and {0,1} , then ,  

    i.e., keys mu

Theorem

s  b

 

t

1:

Shannon's Theorems

n l

M K

M K n l  





e at least as long as messages.

   When ,  the encryption scheme is

    perfectly secret if and only if both of the following hold:

   Every key is generated by  with equal prob    ab

Theorem 

i

2: M K C

Gen

 

lity 1 ;

   For every  and ,  there is a unique  such

        that ( ) .  (Encrypting a message  with different

        keys  will yield different ciphertexts .

   

)

 

k

K

m M c C k K

Enc m c m

k c

  


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 

 

  Consider the uniform distribution over .

    Let  be any ciphertext such that Pr 0.

    Let ( ) ( ) :  ,  the set of all messages

    that may be encrypted to  with 

 (Theorem 1)Proof of 

k

M

c c

M c Dec c k K

c

M K

 

 





C

   

non-zero probability.

    Clearly, ( ) .

  ,  then there is a message ( ) 

    for which ,

    contradicting the assumption of perfect 

I

s

f 

ec

( )

re

Pr | 0 Pr

( ) ,  

cy.

  Hence, and thus 

M c K

m M M cM c M

m c m

M c M M





 

    







M C M

( ) .c K
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 

 

  Observation:    is deterministic.

  Sufficiency:

    The two conditions hold

     For every  and ,  Pr ( ) 1

     For all ,   and ,  

          Pr ( ) P

Proof of Theorem 2

M C Enc

m M c C Enc m c K

m m M c C

Enc m c





 

    

  

 

K

K  r ( )

     Perfect secrecy (by Lemma 1).

Enc m c 



K
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 

  Necessity: Assume  and perfect secrecy.

     Consider any arbitrary (but fixed) . 

     Let ( ) : ( ) ,   the set of all keys 

       encryping  to .  Note: ( ) ( )  if .

   

k

M K C

c C

K m k K Enc m c

m c K m K m m m

 



  

   



 

 

  There is an  with Pr ( ) 0,  since .

       By Lemma 1, Pr ( ) 0 for every . 

       Thus, 

     This, together with ,  implies  

     Let  be

( ) 1 for every .

( )

 the un

1

i

.

m

m M Enc m c M C

Enc m c m M

K

K

m M

K m

k

m

M

   

  

 

 

K

K

   

   

   

que key in ( ) that encrypts  to .

     Then, Pr ( ) Pr .

     Since Pr ( ) Pr ( )  for all ,  ,

     Pr Pr 1  f  or all ,  .m

m

m

K m m c

Enc m c k

Enc m c Enc m c m m

k k K m m M

M



  

 

 

  

  

K

K K

K K

K
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  With Shannon's theorem, it is trivial to see that Vernam's

    one-time pad is perfectly secret.

  It is easy to design another perfectly secret encryption scheme.

  For ex

Applying Shannon's Theorem





 ample, take Caesar’s shift cipher:

      {0,  1,  ...,  25} { , ,..., }.

      Key generation:  .

      Encryption:  ( ) ( ) mod 26 

  Caesar’s shift cipher is perfectly secret if it is used

u

k

K M C a b z

k K

E m m k

   





 

 to encrypt

    only  letone ter.
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  Suppose we use Caesar’s shift cipher to encrypt a message

    (any sequence of letters), but uniformly randomly generate a

     key for each letter.

  Thus, {0,  1,

w

 ...

ne

Is it perfectly secret?

K M C  



 * *

1 2

1 2

1 2

,  25} { , ,..., } .

  To encrypt a message :

      Generate a key , with  for each .

      Let ( ) ,  where ( ) mod 26.

  Each plaintext letter  is perfectly

t

t i u

k t i i i

i

a b z

m m m m

k k k k k K i

Enc m c c c c m k

m





 

 







 protected, but not the 

    entire message.
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  To achieve perfect secrecy:

      keys must be as long as messages (if {0,1}  and {0,1} );

      a new key must be generated for each message.

  It is desired to u

Limitations of Perfect Secrecy

l nK M







se a  to encrypt .

      To this end, we need to  the security requirement.

      Unfortunately, it is hard to relax the conditions

      

short key multiple messages

  of perfect secrecy.

  

rel

  

a

e

x

  W  will define a different notion of security that is equivalent

         to perfect secrecy and can be easily relaxed.
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eav

,

0 1

 Imagine an experiment on an encryption scheme :

  The adversary  chooses two messag

not necessarily of the same length

es , ,

        

   

.

 

 

   

Perfect Indistinguishability Experiment PrivKA

A m m M









  Bob generates a key  and a bit {0,1}.

        He computes and gives the ciphertext ( ) to .

        (  is called the challeng

 

  

e ciphertext.)

   outputs a bit , triying to te  ll 

u

k b

k Gen b

c Enc m A

c

A b

 





eav

,

0 1

Priv

whether  is the encryption

        of  or .

  The output,  of the experiment is 1 iff  

        (i.e

    

.,  succ ed .)

K

s

,

e

A

c

m m

b b

A



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 Encryption scheme: ( ,  ,  ) with message space .

 Adversary: an eavesdropper w uith  computing power.

 We model the adversary as a p

 

 

 

nl

ro

im e

b

it d

a

Definition of Perfect Indistinguishability

Gen Enc Dec M 





0 1

0 1

bilistic algorithm  that on

    input ,  and  outputs a bit {0,1}.

 An encryption scheme 

ever

is 

 if for  adversary 

perfectly ind

 a

istinguishable

nd every two m   essages ,  , 

    

 

 

y

  

A

m m M c C b

A m m M







  

eav

, 0 1

0 1

eav

, 0 1

1
            Pr PrivK ( ,  ) 1   

2

    or, equivalently, for   and every two ,  , 

1
                   Pr PrivK (

eve

,  ) 1   

ry

2

A

A

m m

A m m M

m m





   



   
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 

 

eav

, 0 1

0

0 1

1

0 1

 Some authors write Pr PrivK ( ,  ) 1  as

   Pr :  

    where  indicate the output o

{0,1},  

f  on 

    input , , ( ).

 Thus, an encrypti

, , ( )

, , ( )

 s

 

on 

A

k

k b

u Genb

k b

b kA m m En

m m

A

m m

c m b

A m m En

E

c m

c

K

n m


  

 







 

 0

0 1

0 1

0 1

cheme is 

 if for  adversary  and every two messages , , 

1
     Pr , , ( ) :  {0,1},  

ever

perfectly indisti

  
2

  or, equivalently,

     Pr , , ( ) 1:

nguishable

  

 

  

 y

k b u

k

A m m M

A m m Enc m b b k Gen

A m m En mc k Ge



     

 

 0 11

 

                             Pr , , ( ) 1:  k

n

A m m E k nmnc Ge

  

   
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 

 

   

eav

,

0 1

0 1

 

1

0

0

1

  {0,1} 
  

  {0,1}
  ,  

{0,

Pr PrivK ( ,  ) 1

  =  Pr :  

  =  Pr[ ] Pr[ ] Pr

  =  Pr[ ] Pr[ ]

, , ( )

, , ( )

Pr Pr

 

,

,

) ,

1}  

(

Remark

k b

k b

u

b

A

k

b
k K

b
k CK c

b kA m m E m b

A m m Enc m b

Enc m c A

m m

b

Gen

k

b k m m c b









  

  

    

    

 







   

  1

0 1

0 01

  {0,1}
   

 =  Pr[ ] Pr Pr

   = output of 

( ) , ,

, ,  on i( nput , ,) ( ).

b

k k bb

b
c C

Enc m c A m m c b

A m m Enc m

b

A m m Enc m




    K
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  An encryption scheme is perfectly secret 

  

 

  if and only i

Theorem:

f it is perfectly indistinguishable

 

.

Equivalence of perfect secrecy and

                perfect indistinguishability


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   

  

0 1 0 1

eav

, 0 1

 If the encryption scheme is perfectly secret, then

    Pr ( ) Pr ( )  for all , ,  .

 Pr PrivK ( ,  ) 1      

 

P   

  

r  win s

 

Perfect secrecy perfect indistinguishability

A

Enc m c Enc m c m m M c C

m Am

    

  



 



K K

 

     

   

0 1

0,1; 

0 1

0,1

0 0 1

0,1

 Pr ,  ( ) ,  ( , , )

    Pr Pr ( ) Pr ( , , )

1 1
    Pr ( ) Pr ( , , )
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