Perfectly-Secret Encryption

CSE 5351: Introduction to Cryptography
Reading assignment:
- Read Chapter 2

* You may skip proofs, but are encouraged
to read some of them.
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Symmetric-key encryption scheme

An encryption scheme IT consists of three algorithms Gen,
Enc, Dec and three spaces K, M, C.

K, M, C: key space, message space, ciphertext space.
Key generation algorithm Gen generates keys k according
to some distribution (usually uniform distribution).

We write k < Gen.

Encryption algorithm: ¢« Enc, (m)

Decryption algorithm:  m:= Dec, (c)

Note: Gen and Enc are probabilistic algorithms, Dec is
deterministic.



Note: We don't need to explicitly specify K and C as they
are implicitly defined by Gen and Enc, respectively.
Correctness requirement: foranyke K andme M,

Dec, (Enc, (m))=m.
To use the scheme, Alice and Bob run Gen to generate
a key k € K, and keep it secret.

Question: What is the security requirement?



Example encryption scheme

Consider Caesar's shift cipher with M ={a,b,c,d}
represented as {0,1,2,3}.

Key generation: Kk <, {0,...,25}.

Encryption:
« Randomly generate a bit b < {0,1}.
 Let Enc (m)=(m+k +5b) mod 26.
m + k) mod 26 Ith probability 1/2
e le., Enc (m)= (m+K) W! P ”y /
(m+k-+5)mod26 with probability 1/2

Decryption: ?



The notion of security

Consider a ciphertext-only attack, where the adversary is an
eavesdropper with a single ciphertext ¢ «<— Enc, (m).
Adversary's possible objectives:

1. To recover the secret key K.

2. To recover the plaintext m.

3. To recover any information about m.

We will adopt and formalize the last one (#3).

Informally, an encryption scheme is secure if from a ciphertext
¢ no adversary can obtain any information about its plaintext m.



Shannon's notion of perfect secrecy

Adversary: an eavesdropper with unlimited computing power

and being able to see a single ciphertext.

Encryption scheme: (Gen, Enc, Dec, K, M, C)

Envision an experiment:

o Alice generates a key K «— Gen,

« picks a message M from the message space M according to
some probability distribution, and

- obtains a ciphertext C = Enc, (M).

M, K, C are random variables over M, K, C, respectively.



Notation:

Pr[M = m] = probability that message m Is picked.
Pr[K = k] = probability that key k is generated by Gen.
Pr[C = c] = probability that c is the ciphertext.

The distribution of M Is a characteristic of M.

The distribution of K is determined by Gen.

The distribution of C is induced by Enc and depends on
the distributions of M and C:

PriC=c]= >  Pr[M=m]-Pr[K=k]-Pr[Enc, (m)=c]

meM , keK



Conditional probabilities:

» Pr[C=c|M=m] = ) Pr[K=Kk]-Pr[Enc,(m)=c]

keK

Pr[(M=m) A(C=c)]
Pr[C=c]

« Prf[M=m|C=c] =

=Y Pr[(M=m) A (K=k) A (Enc,(m) :C)]/Pr[C:C]

keK

=Y Pr[M=m]-Pr[K =k]-Pr[Enc,(m) =C]/Pr[c=c]

keK
(M and K and the randomness of Enc are assumed to

be independent.)



Example encryption scheme

Consider Caesar's shift cipher with M ={a,b,c,d}
represented as {0,1,2,3}.

Key generation: k «,{0,...,25}.

(m+k)mod 26 with probability 1/2

Encryption: Enc, (m) =
yP (m) {(m+k+5)mod26 with probability 1/2

Assume Pr[M=m]=(m+1)/10.
Get familiar with these:  Pr[Enc,(m) =c], Pr[Enc,(m) =c],

Pr[Enc (M) =c], Pr[C=c], Pr[C=c|M=m], Pr[M=m|C=c]
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Shannon's Definition of Perfect Scerecy:

An encryption scheme is perfectly secret if for every probability
distribution over M, every message m € M, and every ciphertext
¢ € C for which Pr[C=c]>0, it holds:

PrlM=m|C=c]| = Pr[M=m]
Lemma 1: An encryption scheme is perfectly secret if and
only if forallm, m"e M and c €C, it holds:

Pr[Enc,(m)=c|=Pr[Enc,(m")=c]

where Pr[Enc,(m) =c]= ) Pr[K=k]-Pr[Enc,(m)=c].

keK
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To show a scheme not perfectly secret, it suffices to show a
counterexample, 1.e., to construct a distribution over M,

a message m e M, and a ciphertext c e C with Pr[C=c]>0,
such that:

Pr[M=m|C=c] # Pr[M=m]

Or construct two messages m, m’e M and a ¢ € C such that

Pr[Enc,(m)=c] # Pr[Enc,(m")=c]
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Example encryption scheme

Consider Caesar's shift cipher with M ={a,b,c,d}
represented as {0,1,2,3}.

Key generation: k < {0,...,25}.

Encryption:
« Randomly generate a bit b < {0,1}.
 Let Enc, (m)=(m+ k +5b) mod 26.

Foreveryme M, ceC, itholds:
Pr[Enc,(m)=c] = Pr[(m+K+5b)mod26 =c]

= 1/2-Pr[K=(c—m)mod26]+1/2-Pr[K=(c—m—-5)mod 26|

= 1/26.
This scheme is perfectly secret by Lemma 1.
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Vernam's one-time pad encryption scheme

M =K=C={0,1}", n fixed.

Key generation: k «, {0,1}
Encryption: cC.=maoKk.

One-time pad: each key is used only once.

The scheme is perfectly secret (against eavesdroppers
having a single ciphertext). Reasons:

. vm,ce{0,1}", Enc,(m)=c iffk=m@c.

» Thus, Pr[Enc,(m) =c|=Pr[K=m®c]=1/2".

« Apply Lemmal.
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If a pad Is used twice

M =K=C={0,1", n fixed.

Key generation: k «{0,1}
Encryption: cC=maoKk.

If a key k Is used to encrypt two messages:
c=m®k and c'=m'®k

From c and c’, the adversary can tell something about
the messages: m®@m’'=c®c’.

The scheme Is not secure against eavesdroppers with
multiple ciphertexts.
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If a pad Is used twice

We may regard the scheme as having K = {O,l}n and

M=C = {0,1}2n , with encryption algorithm:
Enc, (m) =m® (k || k).

It is not perfectly secret since
PriM=0"0"|C=0"" |=0#Pr/M=0"0" |>0

for the uniform distribution over M.
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One-time pad for messages of varying length

M =C={0,1}u{0,1}", n fixed.
K=1{0,1}".

Key generation: k <, {0,1}".
Encryption: c:=E (m)=meKk

where if m €{0,1} then only the first bit of k is used.

Question: Is this scheme perfectly secret?
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Shannon's Theorems

Theorem 1: [a necessary condition for perfect secrecy]
If an encryption scheme is perfectly secrect, then M| <|K]|.

Thus, if M ={0,1}" and K ={0,1}, then n <1,
l.e., keys must be at least as long as messages.

Theorem 2: When |M|=|K|=|C|, the encryption scheme is

perfectly secret if and only if both of the following hold:

» Every key is generated by Gen with equal probability 1/|K]|;

« ForeverymeM andceC, there is a unique k € K such
that Enc, (m) =c. (Encrypting a message m with different
keys k will yield different ciphertexts c.)
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Proof of |M|<|K| (Theorem 1)

Consider the uniform distribution over M.

Let ¢ be any ciphertext such that Pr|C=c]> 0.

Let M(c) = {Deck (c): ke K}, the set of all messages
that may be encrypted to ¢ with non-zero probability.
Clearly, M (c)|<|K]|.

If M (c)= M, then there isa message me M — M (c)
for which PrlM=m|C=c]=0#Pr[M=m|,
contradicting the assumption of perfect secrecy.
Hence, M (c) =M, and thus [M (c)|<|K]|.
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Proof of Theorem 2
Observation: [M|=|C| = Enc is deterministic.
Sufficiency:
The two conditions hold
— ForeverymeM and ceC, Pr[Enc,(m)=c]|=1/|K|
= Forallm, m'eM andceC,
Pr[Enc,(m)=c]|=Pr[Enc,(m") =c]

— Perfect secrecy (by Lemma 1).
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Necessity: Assume |M|=|K|=|C| and perfect secrecy.

 Consider any arbitrary (but fixed) c € C.

« Let K(m) ={k e K:Enc,(m) =c}, the set of all keys
encrypingm toc. Note: K(mM)nK(m) =D ifm=m".

« There isan m e M with Pr[Enc, (M) =c]|=0, since |[M|=|C|.
By Lemma 1, Pr[Enc, (m)=c]|= 0 foreveryme M.
Thus, |K(m)|>1 for everyme M.

» This, together with |M|=|K|, implies |K(m)|=1.

o Let k_ be the unique key in K(m) that encrypts m to c.

« Then, Pr[Enc, (m)=c|=Pr[K =k, |.

» Since Pr[Enc, (m)=c|=Pr[Enc,(m")=c] forallm, m" e M,
Pr[K=k,]=Pr[K=k,]=1/|K| forallm, m" e M.
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Applying Shannon's Theorem

With Shannon's theorem, it is trivial to see that Vernam's
one-time pad is perfectly secret.

It Is easy to design another perfectly secret encryption scheme.
For example, take Caesar’s shift cipher:

« K=M=C={0, 1, ..., 25}={a,b,...,z}.

 Key generation: k «, K.

 Encryption: E, (m)=(m+k) mod 26

Caesar’s shift cipher is perfectly secret if it is used to encrypt
only one letter.
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Is It perfectly secret?

Suppose we use Caesar’s shift cipher to encrypt a message
(any sequence of letters), but uniformly randomly generate a
new key for each letter.

Thus, K=M =C ={0, 1, ..., 25} ={a,b,...,z}.

To encrypt a message m=mm,...m,:

 Generate a key k =kk, ...k, with k. «<— K for each I.
 Let Enc,(m)=cgc,...c,, where c. =(m. +k.) mod 26.

Each plaintext letter m. is perfectly protected, but not the
entire message.
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Limitations of Perfect Secrecy

To achieve perfect secrecy:
. keys must be as long as messages (if K ={0,1}' and M ={0,1}");
 anew key must be generated for each message.

It is desired to use a short key to encrypt multiple messages.

« To this end, we need to relax the security requirement.

o« Unfortunately, it is hard to relax the conditions
of perfect secrecy.

« We will define a different notion of security that is equivalent
to perfect secrecy and can be easily relaxed.
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Perfect Indistinguishability Experiment Privkey,

Imagine an experiment on an encryption scheme I1:

- The adversary A chooses two messages m,,m, € M,
not necessarily of the same length.

- Bob generates a key k «— Gen and a bit b «—, {0,1}.
He computes and gives the ciphertext ¢ «<— Enc, (m,) to A.
(c i1s called the challenge ciphertext.)

« A outputs a bit b, triying to tell whether c is the encryption
of m, or m,.

« The output, PrivK®". , of the experiment is 1 iff b =D’

ATl

(i.e., A succeeds.)
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Definition of Perfect Indistinguishability

Encryption scheme: Il = (Gen, Enc, Dec) with message space M.
Adversary: an eavesdropper with unlimited computing power.
We model the adversary as a probabilistic algorithm A that on
Input m,,m, € M and c € C outputs a bit b’ €{0,1}.

An encryption scheme is perfectly indistinguishable

If for every adversary A and every two messages m,, m, e M,

: 1
Pr| PrivK$". (m,, m)=1| < =
| PrivKG (Mg, m) =1] < =
or, equivalently, for every A and every twom,, m, e M,
1

Pr| Privk s, (mg, m) =1] = >
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Some authors write Pr| Privk ", (m,, m,) =1] as

Pr| A(my,m, Enc, (m,))=b: b« {01}, k <, K]
where A(m,,m;, Enc,(m,)) indicate the output of A on

Input m,,m, Enc, (m,).

Thus, an encryption scheme is perfectly indistinguishable
If for every adversary A and every two messages m,,m, € M

+ Pr[ A(my,m;, Enc, (my))=b: b« {0,1}, k«Gen| <

N|F— -

or, equivalently,
+ Pr[ A(m,,m;, Enc, (m,))=1: k « Gen |
= Pr| A(my,m;, Enc, (m,))=1: k « Gen |
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Remark

Pr| Privk ", (m,, m,) =1]

IT

= Pr| A(my,m, E,(m,))=b: b« {0,1}, k « Gen|

2 Prib]-Prk]-Pr[ A(m;, m,, Enc, (m,)) =b

be{0,1}
keK

> Pr[b]-Pr[k]-Pr[Enc, (m,) =c]-Pr| A(m;,m,,c)=b

be{0,1}
keK,ceC

> Pr[b]-Pr[Enc,(m,) =c]-Pr| A(m,,m,,c)=b]
bef0.1}

Ce

« A(m,,m,, Enc, (m,)) = output of A on input m,,m,, Enc, (m,).
28



Equivalence of perfect secrecy and
perfect indistinguishability

Theorem: An encryption scheme is perfectly secret
If and only if it is perfectly indistinguishable.
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Perfect secrecy = perfect indistinguishability

If the encryption scheme is perfectly secret, then

Pr[Enc,(m,) =c]=Pr[Enc,(m,) =c] forallm;,m e M, ceC.

Pr| Privk, (my, m)=1]  (=Pr[A wins])

_ Z Pr[b=i, Enc,(m)=c, A(m,,m;,c)=i]

1=0,1; ceC

=> > Pr[b=i]-Pr[Enc(m;) =c]-Pr[A(m,,m,c) =i]

ceCi=0,1

=—Z(Pr[Enc(m0) c]- > Pr[A(m,,m, c)—|]j=%

ceC i=0,1
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Perfect secrecy < perfect indistinguishability
If not perfectly secret, then there exist m,,m, € M such that
Pr| Enc, (m,) =¢” | # Pr| Enc,(m,) =¢” | for some ciphertext c” e C.
Define an adversary A as follows.
- A chooses the above two messages m,, m,.

« On a given challenge ciphertext c,

(0 if Pr[Enc, (m,) =c]> Pr[Enc (m,) =c]
A(m,,m,c) =+ 1 if Pr{Enc,(m,) =c] < Pr[Enc,(m,) =]
' b'«,{0,1} otherwise

It can be verified that A succeeds with probability >1/2.

The scheme Is not perfectly indistinguishable. 31



