Cryptographic Protocols

CSE 5351
Spring 2017

This course:

APPLICATIONS (securit

Encryptio Crypto
Schemes Protocol

Pseudorandom
Generators
And Functions

Zero-Knowledge
Proof Systems

Computational Difficulty (One-Way Functions)

Cryptographic Protocols

Entity Authentication
Key Agreement
Commitment Schemes

Entity Authentication

* Problem: Alice wants to prove to Bob
that she is Alice and/or vice versa.

e Basic idea: Alice shows that she knows some

secrecy which is presumably known only to Alice
(and Bob).

 That secrecy could be, for example:
- Alice’s password or PIN
- a MAC or encryption key shared by Alice and Bob, or
- Alice’s RSA private key.

IS It secure against an eavesdropper?

Protocol:

0. A
1. A
2. A

Ice > Bo
Ice <« Bo
Ice » Bo

0: "I'm Alice"
0: "What's your password?"

0. Alice's password

3. Bob verifies the password

Challenge-and-response using a secrete key

Alice and Bob share a secret key k.
Protocol

(0. Alice —» Bob: "I'm Alice")
1. Alice <~ Bob: arandom challengerr.
2. Alice —» Bob: y=MAC, (r).

3. Bob computes y'=MAC, (r) and checks if y =’
Or

Use encryption instead of MAC.

Parallel sessions attack

Alice Eve Bob

y = MAC, (r)

Countermeasure

Alice Eve Bob
¢

y = MAC, (r||Alice) N

Challenge-and-response using a secret key

Alice and Bob share a secret key k.
Protocol (secure):
1. Alice «<— Bob: arandom challenge r.
2. Alice > Bob: y=MAC, (ID(Alice)||r).
3. Bob computes y'= MAC, (ID(Alice) || r)
and checks if y=1".

Mutual authentication using a secret key

Alice and Bob share a secret key k.
Protocol
1. Alice «— Bob: arandom challenge r,.
2. Alice —» Bob: y, = MAC, (ID(Alice)||r,) and r,.
3. Alice « Bob: y, = MAC, (ID(Bob) || r,).
4. Alice and Bob verify each other's response.

Man-in-the-middle attack

Alice Eve Bob
< 1

MAC, (AllR). 1

>

« MAC(B |)

Countermeasure

Alice Eve
< 1

MAC, (Al r|lR) b

>

« MAC(B 1)

Bob

Mutual authentication using a secret key

Alice and Bob share a secret key k.
Protocol (secure):
1. Alice <~ Bob: arandom challenge r,.
2. Alice —» Bob: y, = MAC, (ID(Alice) ||, ||r,) and r,.
3. Alice « Bob: y, = MAC, (ID(Bob) || r,).
4. Alice and Bob verify each other's response.

Public-key mutual authentication

Protocol (secure):
1. Alice «— Bob: arandom challenge r,.
2. Alice — Bob: y, =Sign aice (ID(BOb) || 1, || 1) and .
3. Alice <~ Bob: y, =Sign g, (ID(Alice) ||r,).
4. Alice and Bob verify each other's response.

Key Agreement

Two levels of keys

e Master (long-lived) keys: (asymmetric) keys used for entity
authentication and session key agreement.
e Session keys: (symmetric) keys used only for a session.

Reasons for using session keys:

1. Limiting the amount of ciphertext available to attackers.

2. Limiting the damage to only a session in case of
session key compromise.

3. Symmetric encryption is faster.

Diffie-Hellman key agreement

e Alice and Bob want to set up a session key.
1. Alice and Bob agree on a large prime p and a generator
Q€ Z;.
2. Alice — Bob: a”mod p, whereae, Z_ .

3. Allice «— Bob: &"mod p wherebe, Z ..

4. They agree on the key: o mod p.
e Security:
« Provides protection against eavesdroppers.
« Insecure against active adversaries.
« Problem: lack of authentication.

Authentication Is important in key establishment

e \When establishing a session key, make sure you are
doing it with the right entity.

e Two approaches:
o Entity authentication + Diffie Hellman

- Entity authentication + Encrypted session key

Recall: Public-key mutual authentication

Protocol:

1. A
2. A

3. A
4. A

Ice > Bo
Ice « Bo

Ice > Bo

n: arandom challenge .
0. Y, = Signsk(Bob)(ID(BOb) H I H rz) and ’x

0. y2 — Sigr]sk(AIice)(ID('A‘Iice) H rz)-

iIce and Bob verify each other's response.

Combine Diffie-Hellman with the above protocol:
o Alice uses a” forr,.

. Bob uses a” forr,.
The resulting protocol is called Station-to-Station Protocol.

Station-to-station protocol

Alice and Bob each have a signature key pair.

Protocol:
0. Aand B agree on p and « € Z as in DH key agreement.
LA->B rn=a", whereae; Z_ .
2. A< B:r,=a",y, =Signg (B||r||1,),wherebe, Z ..
3. A—>B:y, =Signg (AL | 1)
4. If all verifications pass, use k = o™ as the session key.

Remark: all computations are done modulo p.

Public-key based authenticated key agreement

Alice and Bob each have an encryption and a signature key pair.
Protocol:

1. A— B: arandom challenge r,.

2. A<B:y :Signsk(B) (Allrllr,) n,

3. A—B:y, =Signg, (B|1,).
4. Alice and Bob verify each other's response. If
all verifications pass, Alice decrypts c to obtain k.
They now can use k as the session key.
Security: this protocol provides no forward secrecy.

Forward secrecy

e Suppose Eve records all (encrypted) messages exchanged
between Alice and Bob during a session. If later Eve gets
Alice's decryption key d , , she will be able to decrypt ¢ to
get the session key K.

e A session-key agreement scheme is said to provide forward
secrecy If it resists this kind of attacks (i.e., session keys are
secure even If master keys are later compromised.)

e Station-to-station provides forward secrecy.

Commitment Schemes

Commitment schemes

Two parties: sender S and receiver R.

Scheme:
1. Commit: S sends a message c,, committed to a bit/value b.

2. Reveal: S sends an additional message m, to reveal b.
3. Verify: R(c,,m,) = accept iff the committed bit/value
equals the revealed bit.

Security equirements:
1. Hiding: R cannot learn anything about b fromc, .
2. Binding: S cannot change the committed bit/value without

being detected.

Hiding:
« Computationally hiding: R cannot in polynomial time
« Unconditionally hiding: R absolutely cannot

Binding:
« Computationally binding: S cannot in polynomial time
« Unconditionally binding: S absolutely cannot

An application: coin tossing by email or phone

Problem: Alice and Bob want to toss a coin by email to
decide who wins.
Protocol:
1. Alice sends c, to Bob, committed to a random bit b.
2. Bob generates a random bit b" and sends it to Alice.
3. Alice sends her committed bit b to Bob.
4. Bob verifies that R(c,,b) = accept, and both parties
agree on the outcome b@® b,
Note: if b or b’ is random then b® b’ is random.

Using symmetric encryption

Protocol:
1. Commit: To commit a value m, Alice sends

c := Enc, (m) to Bob, where k Is a symmetric
encryption key chosen by Alice.

2. Reveal: Alice sends k to Bob.

3. Verify: Bob accepts the value m:= Dec, (c).

Question: does it meet the hiding and binding requirement?

Using public-key encryption

Protocol:
1. Commit: To commit a value m, Alice generates
a pair of keys (pk,sk), and sends ¢ := Enc, (m) along
with pk (and system parameters) to Bob.
2. Reveal: Alice reveals m to Bob.
3. Verify: Bob accepts m if Enc , (m) =c.

Question: Does it meet the hiding and binding requirement?

Using a hash function H

Protocol:
1. Commit: To commit a value m, Alice sends the hash
value c:=H(m|| r) to Bob, where r is random.
2. Reveal: Alice reveals m and r to Bob.
3. Verify: Bobacceptsmif H(m|/r)=c.

Question: Does it meet the hiding and binding requirement?

DL-based commitment scheme

1. System setup (known to S and R):
P, q large primes, with g | p —1;
G, the unique subgroup of order q of Z;;
g, h: generators of G_; h random;
G, ={0°9"9%....g" "} ={h° h',h*, . ho},
2. Commit (S—>R): c=g'h", wherere, Z, and
me Z, Is the value being committed.
3. Reveal (S— R): (r,m).
4. Verify: R acceptsmifc=g'h".

Security

1. (Unconditional) Hiding: Foranym,c=g'h" is
uniformly distributed over G; hence, m is perfectly
hidden from R.

2. (Computational) Binding: S can change her
commitment iff she knows (r,m), (r’,m’), m=m’,
such that g"h™ = g"h™ = g~"™-m" —p

= log, h=(r—r")(m—=m)™ =<« DL assumption.

Note: computations like g"h™ are done modulo p;
exponents and logarithms are computed modulo g.

Q: What if we change the commitment to the following?
« c:=h" (without usingg")

« c:=0g""" (namely, g =h)

	Cryptographic Protocols
	Slide Number 2
	Cryptographic Protocols
	Entity Authentication
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Key Agreement
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Commitment Schemes
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

