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This course:



Cryptographic Protocols
■ Entity Authentication   
■ Key Agreement
■ Commitment Schemes



Entity Authentication
• Problem: Alice wants to prove to Bob 

that she is Alice and/or vice versa.

• Basic idea: Alice shows that she knows some  
secrecy which is presumably known only to Alice
(and Bob).

• That secrecy could be, for example:
- Alice’s password or PIN
- a MAC or encryption key shared by Alice and Bob, or 
- Alice’s RSA private key.
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  Alice and Bob want to set up a  key.
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 When establishing a session key, make sure you are 
    doing it with the right entity.
 

Two approaches:

     Entity authentication + Diffie Hellman
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Alice and Bob each have a signature key pair.

  0. A and B agree on  and Z  as in DH key agreement.

  1.  A B:  ,  where .
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Commitment Schemes



Two parties: sender  and receiver .
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