
Cryptographic Protocols

CSE 5351
Spring 2017

2

Computational Difficulty (One-Way Functions)

Pseudorandom
Generators
And Functions

Zero-Knowledge
Proof Systems

Encryption
Schemes

Crypto
Protocols

Sign/MAC
Schemes

APPLICATIONS (security)

This course:

Cryptographic Protocols
■ Entity Authentication
■ Key Agreement
■ Commitment Schemes

Entity Authentication
• Problem: Alice wants to prove to Bob

that she is Alice and/or vice versa.

• Basic idea: Alice shows that she knows some
secrecy which is presumably known only to Alice
(and Bob).

• That secrecy could be, for example:
- Alice’s password or PIN
- a MAC or encryption key shared by Alice and Bob, or
- Alice’s RSA private key.

:
 0. Alice Bob: "I'm Alice"
 1. Alice Bob: "What's your password?"
 2. Alice Bob: Alice's password
 3. Bob verifies the passw

Protoc

ord

ol

Is it secure against an eavesdropper?

→
←
→

 ():
 (0. Alic

Alice and Bob share a secret key .
ins
e Bob: "I'm Alice")

 1. Alice Bob: a random challenge .

Proto

 2.

c

 Alice Bob: MAC ().
 3

ecure

.

ol

Challenge-and-response using a secrete key

k

r
y

k

r

→
←
→ =

 Bob computes MAC () and checks if .

 Use encryption instead of M
Or

AC.

ky r y y′ ′= =

 MAC

()

Parallel sessions attack

Alice Bob

 Eve

k

r

y r

r

=

←
→
←

 MAC ()

 ky r=→

 MAC ()

Bob

 M

Count

ermeasu

r

e

 EvA oelice B b

k

r

r

r

y

y =

=

←
→
←

AC (Alice)

k r→

 ():
 1. Alice

Alice and Bob share a secret key .
seProtocol

ID(Alic
Bob: a random challenge .

 2. Alice Bob: MAC ().
 3. Bob c

e)
omputes M

cure

AC I(

Challenge-and-response using a secret key

k

k

r

k

r
y
y

←
→ =

′ =

)
 and checks

D(
if

Alice)
 .

r
y y′=

1

21 1

Alice and Bob share a secret key .
:

 1. a random challenge
insecure

and .
Alice Bob: .

 2. Alice Bob:
 3. Ali

Protocol (

MAC (ID(
ce B

Alice
ob:

)

))

Mutual authentication using a secret key

k

r
rr

k

y =
←
→
←

2 2

 4. Alice and Bob verify each
M

other's response
AC (ID(Bob))

.
.ky r=

1

3

2

2

2

1

MAC (A),

MAC (B),

M

Man-in-the

-middle attack

Alice

e BE obv

k

k

r

r

r r

r

r

←
→

→
←

2 AC (B)

k r←

2

1

1

3

2

2

32

MAC (A

MAC (

B),

MAC

),

Counterme

Alic Bo

as

ure

Eve b

e

k

k

r

r r r

r

r r r

←
→

→
←

2 (B)???

k r←

1

2 21 1

 ():
 1. Alice Bob: a random challenge .
 2. Alice Bob: MAC (ID(Alice)) and .
 3. A

Alice and Bob share a secret key

lic

 .
secPr u

e Bob:

otoc reol

Mutual authentication using a secret key

k

k

r r
r

y r
←
→ =
←

2 2 MAC (ID(Bob)).
 4. Alice and Bob verify each other's response.

ky r=

1

1 1(Allice 2 2

2

)

(Bob) 2

 ():
 1. Alice Bob: a random challenge .
 2. Alice Bob: Sign (ID(Bob)) and .
 3. Alice Bob: Sign (ID(Alice)).

securProt

4.

ocol e

Public-key mutual authentication

sk

sk

r
y r r r
y r

←
→ =

← =

 Alice and Bob verify each other's response.

Key Agreement

 (asymmetric) keys used for entity
 authentication a
 Master (long-lived) keys:

 S
nd session key agreement.

 (symmetric) keys used onlyession k for a se ession.

Reasons for usin

ys:

Two levels of keys
•

•

1. Limiting the amount of ciphertext available to attackers.
2. Limiting the damage to only a session in case of
 session key compromise.
3. Symmetric encrypt

g session

ion is fa

 keys:

ster.

*

R 1

 Alice and Bob want to set up a key.
 1. Alice and Bob agree on a large prime and a generator
 Z .

 2. Alice Bob: mod , where .

 3. Al

session

Diffie-Hellman key agreement

p

a
p

p

p a Z

α

α −

•

∈

→ ∈

R 1ice Bob: mod where .

 4. They agree on the key: mod .
 Security:

 Provides pr
 Insecure agains

otecti
ac
on again

tivet adver
st eavesdroppe

saries.
 Problem: lack of

r

 a

s.

b
p

ab

p b Z

p

α

α
−← ∈

•

 uthentication.

 When establishing a session key, make sure you are
 doing it with the right entity.

Two approaches:

 Entity authentication + Diffie Hellman

Authentication is important in key establishment

•

•

 Entity authentication + Encrypted session key

(Bob)

(Alice)

2 2

2

1

1

2

1

:
 1. Alice Bob: a random challenge .
 2. Alice Bob: Sign (ID(Bob)) and .
 3. Alice Bob: Sign (ID(Alice)).
 4.

Protocol

Recall: Public-key mutual authentication

sk

sk

rr
y

r
y r

r

→
← =

→ =

1

2

Alice and Bob verify each other's response.

 Alice uses for .
 Bob use
The resulting protocol is called Station-to-Stat

s for
ion Pro

 .
tocol

Combine Diffie-Hellman with the above protocol:
a

b

r
r

α

α

.

*

12

R 11

Alice and Bob each have a signature key pair.

 0. A and B agree on and Z as in DH key agreement.

 1. A B: , where .

 2. A B

Protoc

: , Sign

ol:

Station-to-station protocol

a

b

p

p

sk

Z

y

r

r

p

aα

α

α

−=→ ∈

← ==

∈

(B) 1 2 R 1

2 (A) 2 1

(B),where .
 3. A B: Sign (A).

 4. If all verifications pass, use as the session key.

 all coRema mputations are done modulork: .

p

sk

ab

r r b Z
y r r

k

p

α

−∈

→ =

=

A

1

1 2sk(B) 1 2

Alice and Bob each have an encryption and a signature key pair.

 1. A B: a random challenge .
 2.

P

ro

 A

toco

B: Sign (A), ,

l

 (

:

Public-key based authenticated key agreement

ec c Encr
r

y r r
→

=← =

2 sk(A) 2

where is a session key chosen by B.
 3. A B: .
 4. Alice and Bob verify each other's response. If
 all verif

),

ications pass, Alic

e decrypts to

Sign (B

o

)

b

k

c

y r
k

→ =

Se

ta

cu

in

r

.

ity:
 They now can use as the session key.

 this protocol provides no forward secrecy.

k
k

A

 Suppose Eve records all (encrypted) messages exchanged
 between Alice and Bob during a session. If later Eve gets
 Alice's decryption key , she will be able to decrypt to

Forward secrecy

d c

•

get the session key .
 A session-key agreement scheme is said to provide

 if it resists this kind of attacks (i.e., session keys are
 secure even if master keys a

forward

re later
 secre

 compr i
y

s
c

om

k
•

ed.)
 Station-to-station provides forward secrecy.•

Commitment Schemes

Two parties: sender and receiver .

 1. sends a message , commCommit:
Reveal:

itted to a bit/value .
 2. sends an additional messa

Scheme

ge
Verif

 to reveal .
 3. :

:

(,y

Commitment schemes

b

b

b

S R

S c b
S m b
R c

Hiding:

) iff the committed bit/value
 equals the revealed bit.

 1. learn anything about fr
Bin

om .
 2. change the committed bit/va

cannot
cannot

Security equirement

di lung:

:

wi

s

e

b

b

m accept

R b c
S

=

thout
 being detected.

hiding: in polynomial time
hiding: absol

 Computationally
 Unconditionally

utely

 binding:

Hiding:
cannot

cannot

ca in po Compu lynomia
Binding:

l timetationally
 Uncond

nn
it

ot
on ly i al

R
R

S

 binding: absolutely t cannoS

Problem: Alice and Bob want to toss a coin by email to
decide who wins.
Protocol:
 1. Alice sends to Bob, committed to a random bit .
 2. Bob generates

An application: coin tossing by email or phone

bc b
a random bit and sends it to Alice.

 3. Alice sends her committed bit to Bob.
 4. Bob verifies that (,) , and both parties
 agree on the outcome .
Note: if or is random th

b

b
b

R c b accept
b b

b b

′

=
′⊕

′ en is random. b b′⊕

 1. Commit: To commit a value , Alice sends
 : () to Bob, where is a symmetric
 encryption key chosen by Alice.
 2. Reveal:

Protocol:

 Alice sends

Using symmetric encryption

k

m
c Enc m k

k

=

Questi

to Bob

on:

.
 3. Verify: Bob accepts the value : ().

 d hiding and oes bindit meet the requirement i ? ng

km Dec c=

 1. Commit: To commit a value , Alice generates
 a pair of keys (,), and sends : () along
 with (and system parameters) to Bob.
 2

Prot

. Re

oco

v

l:

Using public-key encryption

pk

m
pk sk c Enc m

pk
=

eal: Alice reveals to Bob.
 3. Verify: Bob accepts if () .

 Does it meet tQuestion: hiding and bindinghe requirement?

pk

m
m Enc m c=

 1. Commit: To commit a value , Alice sends the hash
 value : () to Bob, where is random.
 2. Reveal: Alice reveals and to Bob.
 3. Verify: B

Protocol:

ob

Using a hash function

m
c H m r r

m r

H

=

accepts if () .

 Does it mQuestion: hiding and bindingeet the requirement?

m H m r c=

*

1.

, : generators of ; r

 , large primes, with | 1;
 : the unique subgroup of order of

Syst

;

em setup (known to and):

DL-based commitment scheme

q

q

pG

g h G h

p q q
R

p
q Z

S
−

{ } { }0 1 2 1 0 1 1

u

2

andom;

, , , , , , , , .

 2. (): , where , and
 is the value being committed.

Commit

Reveal3. (): ().
 4. Verify: accept

s if
,

q

q

q q
q

r

r

m

G g g g g h h h h

S R g h

S R

r Z
m Z

R m g
m

c

c

r

− −= =

→ =

→

=

∈

∈

.mh

1. Unconditional is () For any ,
 uniformly distributed over ; hence, is perfectly
 hidden from .
 2. (Computati

Hiding:

Binding:onal) can c

Secur

hange her
 co

ity

mm

 r m

q

c gm h
G m

R
S

=

1()()

1

 (,), (,), ,

 DL assumption.

itment iff she knows

 such that
log ()()

Note: computations like are done modulo ;
 expo

r m r m r r m m

g

r m

r m mr m m

g h g h g h
h r r m m

g h p

−′ ′ ′ ′− −

−

≠′ ′ ′

= =

′ ⇐− ⇒′−

⇒

⇒ =

nents and logarithms are computed modulo .q

What if we change the commitment to the followingQ: ?

 : (without using)

 : (namely,)

m r

r m

c h g

c g g h+

=

= =

	Cryptographic Protocols
	Slide Number 2
	Cryptographic Protocols
	Entity Authentication
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Key Agreement
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Commitment Schemes
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

