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Entity Authentication

* Problem: Alice wants to prove to Bob
that she is Alice and/or vice versa.

e Basic idea: Alice shows that she knows some

secrecy which is presumably known only to Alice
(and Bob).

 That secrecy could be, for example:
- Alice’s password or PIN
- a MAC or encryption key shared by Alice and Bob, or
- Alice’s RSA private key.



IS It secure against an eavesdropper?

Protocol:

0. A
1. A
2. A

Ice > Bo
Ice <« Bo
Ice » Bo

0: "I'm Alice"
0: "What's your password?"

0. Alice's password

3. Bob verifies the password



Challenge-and-response using a secrete key

Alice and Bob share a secret key k.
Protocol

(0. Alice —» Bob: "I'm Alice")
1. Alice <~ Bob: arandom challengerr.
2. Alice —» Bob: y=MAC, (r).

3. Bob computes y'=MAC, (r) and checks if y =’
Or

Use encryption instead of MAC.



Parallel sessions attack

Alice Eve Bob

y = MAC, (r)




Countermeasure

Alice Eve Bob
¢

y = MAC, (r||Alice) N




Challenge-and-response using a secret key

Alice and Bob share a secret key k.
Protocol (secure):
1. Alice «<— Bob: arandom challenge r.
2. Alice > Bob: y=MAC, (ID(Alice)||r).
3. Bob computes y'= MAC, (ID(Alice) || r)
and checks if y=1".



Mutual authentication using a secret key

Alice and Bob share a secret key k.
Protocol
1. Alice «— Bob: arandom challenge r,.
2. Alice —» Bob: y, = MAC, (ID(Alice)||r,) and r,.
3. Alice « Bob: y, = MAC, (ID(Bob) || r,).
4. Alice and Bob verify each other's response.




Man-in-the-middle attack

Alice Eve Bob
< 1

MAC, (AllR). 1

>

« MAC(B | )




Countermeasure

Alice Eve
< 1

MAC, (Al r|lR) b

>

« MAC(B 1)

Bob



Mutual authentication using a secret key

Alice and Bob share a secret key k.
Protocol (secure):
1. Alice <~ Bob: arandom challenge r,.
2. Alice —» Bob: y, = MAC, (ID(Alice) ||, ||r,) and r,.
3. Alice « Bob: y, = MAC, (ID(Bob) || r,).
4. Alice and Bob verify each other's response.




Public-key mutual authentication

Protocol (secure):
1. Alice «— Bob: arandom challenge r,.
2. Alice — Bob: y, =Sign  aice (ID(BOb) || 1, || 1) and .
3. Alice <~ Bob: y, =Sign g, (ID(Alice) ||r,).
4. Alice and Bob verify each other's response.




Key Agreement



Two levels of keys

e Master (long-lived) keys: (asymmetric) keys used for entity
authentication and session key agreement.
e Session keys: (symmetric) keys used only for a session.

Reasons for using session keys:

1. Limiting the amount of ciphertext available to attackers.

2. Limiting the damage to only a session in case of
session key compromise.

3. Symmetric encryption is faster.



Diffie-Hellman key agreement

e Alice and Bob want to set up a session key.
1. Alice and Bob agree on a large prime p and a generator
Q€ Z;.
2. Alice — Bob: a”mod p, whereae, Z_ .

3. Allice «— Bob: &"mod p wherebe, Z ..

4. They agree on the key: o mod p.
e Security:
« Provides protection against eavesdroppers.
« Insecure against active adversaries.
« Problem: lack of authentication.



Authentication Is important in key establishment

e \When establishing a session key, make sure you are
doing it with the right entity.

e Two approaches:
o Entity authentication + Diffie Hellman

- Entity authentication + Encrypted session key



Recall: Public-key mutual authentication

Protocol:

1. A
2. A

3. A
4. A

Ice > Bo
Ice « Bo

Ice > Bo

n: arandom challenge .
0. Y, = Signsk(Bob)(ID(BOb) H I H rz) and ’x

0. y2 — Sigr]sk(AIice)(ID('A‘Iice) H rz)-

iIce and Bob verify each other's response.

Combine Diffie-Hellman with the above protocol:
o Alice uses a” forr,.

. Bob uses a” forr,.
The resulting protocol is called Station-to-Station Protocol.



Station-to-station protocol

Alice and Bob each have a signature key pair.

Protocol:
0. Aand B agree on p and « € Z as in DH key agreement.
LA->B rn=a", whereae; Z_ .
2. A< B:r,=a",y, =Signg (B||r||1,),wherebe, Z ..
3. A—>B:y, =Signg (AL | 1)
4. If all verifications pass, use k = o™ as the session key.

Remark: all computations are done modulo p.



Public-key based authenticated key agreement

Alice and Bob each have an encryption and a signature key pair.
Protocol:

1. A— B: arandom challenge r,.

2. A<B:y :Signsk(B) (Allrllr, ) n,

3. A—B:y, =Signg, (B|1,).
4. Alice and Bob verify each other's response. If
all verifications pass, Alice decrypts c to obtain k.
They now can use k as the session key.
Security: this protocol provides no forward secrecy.




Forward secrecy

e Suppose Eve records all (encrypted) messages exchanged
between Alice and Bob during a session. If later Eve gets
Alice's decryption key d , , she will be able to decrypt ¢ to
get the session key K.

e A session-key agreement scheme is said to provide forward
secrecy If it resists this kind of attacks (i.e., session keys are
secure even If master keys are later compromised.)

e Station-to-station provides forward secrecy.



Commitment Schemes



Commitment schemes

Two parties: sender S and receiver R.

Scheme:
1. Commit: S sends a message c,, committed to a bit/value b.

2. Reveal: S sends an additional message m, to reveal b.
3. Verify: R(c,,m,) = accept iff the committed bit/value
equals the revealed bit.

Security equirements:
1. Hiding: R cannot learn anything about b fromc, .
2. Binding: S cannot change the committed bit/value without

being detected.



Hiding:
« Computationally hiding: R cannot in polynomial time
« Unconditionally hiding: R absolutely cannot

Binding:
« Computationally binding: S cannot in polynomial time
« Unconditionally binding: S absolutely cannot



An application: coin tossing by email or phone

Problem: Alice and Bob want to toss a coin by email to
decide who wins.
Protocol:
1. Alice sends c, to Bob, committed to a random bit b.
2. Bob generates a random bit b" and sends it to Alice.
3. Alice sends her committed bit b to Bob.
4. Bob verifies that R(c,,b) = accept, and both parties
agree on the outcome b@® b,
Note: if b or b’ is random then b® b’ is random.



Using symmetric encryption

Protocol:
1. Commit: To commit a value m, Alice sends

c := Enc, (m) to Bob, where k Is a symmetric
encryption key chosen by Alice.

2. Reveal: Alice sends k to Bob.

3. Verify: Bob accepts the value m:= Dec, (c).

Question: does it meet the hiding and binding requirement?



Using public-key encryption

Protocol:
1. Commit: To commit a value m, Alice generates
a pair of keys (pk,sk), and sends ¢ := Enc, (m) along
with pk (and system parameters) to Bob.
2. Reveal: Alice reveals m to Bob.
3. Verify: Bob accepts m if Enc , (m) =c.

Question: Does it meet the hiding and binding requirement?



Using a hash function H

Protocol:
1. Commit: To commit a value m, Alice sends the hash
value c:=H(m|| r) to Bob, where r is random.
2. Reveal: Alice reveals m and r to Bob.
3. Verify: Bobacceptsmif H(m|/r)=c.

Question: Does it meet the hiding and binding requirement?



DL-based commitment scheme

1. System setup (known to S and R):
P, q large primes, with g | p —1;
G, the unique subgroup of order q of Z;;
g, h: generators of G_; h random;
G, ={0°9"9%....g" "} ={h° h',h*, . ho},
2. Commit (S—>R): c=g'h", wherere, Z, and
me Z, Is the value being committed.
3. Reveal (S— R): (r,m).
4. Verify: R acceptsmifc=g'h".



Security

1. (Unconditional) Hiding: Foranym,c=g'h" is
uniformly distributed over G; hence, m is perfectly
hidden from R.

2. (Computational) Binding: S can change her
commitment iff she knows (r,m), (r’,m’), m=m’,
such that g"h™ = g"h™ = g~"™-m" —p

= log, h=(r—r")(m—=m)™ =<« DL assumption.

Note: computations like g"h™ are done modulo p;
exponents and logarithms are computed modulo g.



Q: What if we change the commitment to the following?
« c:=h" (without usingg")

« c:=0g""" (namely, g =h)
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