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This course:



Cryptographic Protocols
■ Entity Authentication   
■ Key Agreement
■ Commitment Schemes



Entity Authentication
• Problem: Alice wants to prove to Bob 

that she is Alice and/or vice versa.

• Basic idea: Alice shows that she knows some  
secrecy which is presumably known only to Alice
(and Bob).

• That secrecy could be, for example:
- Alice’s password or PIN
- a MAC or encryption key shared by Alice and Bob, or 
- Alice’s RSA private key.
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  0.  Alice Bob:  "I'm Alice"
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Key Agreement
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 When establishing a session key, make sure you are 
    doing it with the right entity.
 

Two approaches:

     Entity authentication + Diffie Hellman

  

 

Authentication is important in key establishment
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  1.  Alice Bob:  a random challenge .
  2.  Alice Bob:  Sign (ID(Bob) ) and .
  3.  Alice Bob:  Sign (ID(Alice) ).
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Alice and Bob each have a signature key pair.

  0. A and B agree on  and Z  as in DH key agreement.

  1.  A B:  ,  where .
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 Suppose Eve records all (encrypted) messages exchanged
   between Alice and Bob during a session.  If later Eve gets 
   Alice's decryption key , she will be able to decrypt  to 
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Commitment Schemes



Two parties: sender  and receiver .
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Problem: Alice and Bob want to toss a coin by email to
decide who wins.
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  1. Alice sends  to Bob, committed to a random bit .
  2. Bob generates 

An application: coin tossing by email or phone
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