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Introduction

CSE 5351: Introduction to cryptography

Reading assignment:

Chapter 1 of Katz & Lindell



Cryptography

 Merriam-Webster Online Dictionary:

1. secret writing

2. the enciphering and deciphering of messages 

in secret code or cipher.

 Modern cryptography is more than secret 

writing.
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Basic objectives of cryptography 

 Protecting data privacy (secret writing)

 Authentication:

 Message authentication: allowing the recipient to check if a 

received message has been modified.

 Data origin authentication: allowing the recipient to verify the 

origin of a received message.

 Entity authentication: allowing the entities of a (connection-

oriented) communication to authenticate each other.

 Non-repudiation:  to prevent the sender from later denying that 

he/she sent the message.
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Main characters of cryptography 

 Alice 

 Bob

 Eve (eavesdropper, adversary) 
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Encryption and secrecy

 Encryption  protects secrecy of transmitted 

messages

 Encryption Enck : plaintext m → ciphertext c

 Decryption Deck’ : ciphertext c → plaintext m

 Encryption key:  

 Decryption key:  
 same or different

k
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Private-key encryption

 Also called symmetric-key encryption

 Encryption key k = decryption key k’

 Dec(k, Enc(k,m)) = m

 Or, Deck(Enck(m)) = m
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Example: Caesar’s shift cipher

 Plaintext:  a sequence of English characters 

m= m1m2…mt

 Each character represented as an integer in 0-25

 Key k:  an integer in 0-25

 Enck(m) = c= c1c2…ct where ci=[(mi + k) mod 26] 

 Deck(c) = m= m1m2…mt where mi= [(ci − k) mod 26]

 Example:   Enc3(ohio) = rklr Dec3( rklr) = ohio
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Public-key encryption

 Also called asymmetric encryption

 Using a pair of keys (pk, sk)

 pk is public, known to everyone (who wishes to know)

 sk is secret, known only to the key’s owner (say Alice)

 From pk, it is hard to derive sk.

 Decsk(Encpk(m)) = m.
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Example: RSA

 Public key  ( ,  )

 Secret key   ( , )

 Encryption:  Enc ( ) mod

 Decryption:  Dec ( ) mod
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Message authentication codes

 Ensuring data integrity using private keys.

 Alice and Bob share a private key k.

 Alice sends to Bob the augmented message 

(m, x), where  x = MACk(m).

 Bob on receiving (m′, x′), checks if x′ = 

MACk(m′).    If so, accepts m′ as authentic.
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Digital signatures

 Ensuring data integrity and non-repudiation 

using public-key methods 

 s = Signsk(m)

 Verifypk(m′, s′) = true or false.

 Hash-then-sign: s = Signsk(h(m)), where h 

is a cryptographic hash function.
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Pseudorandom generators (1)

 Randomness and security of cryptosystems 

are closely related.

 Vernam’s one-time pad encryption scheme:

 To encrypt a message m (a string of bits)

 Randomly generate a bit string k



 c looks random to anyone not knowing the key k.
17

Encrypt  as  bit by bitm c m k 



Pseudorandom generators (2)

 Expensive to generate truly random bits.

 Psuedorandom generators are algorithms 

that, on input a short random bit string,  

generate a longer, random-like bit string.
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Cryptographic primitives

 These are often regarded as basic 

cryptographic primitives:

 Pseudorandom generators/functions

 Encryption schemes

 Cryptographic hash functions

 MACs, digital signatures

 They are often used as building blocks to build 

cryptographic protocols.
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Cryptographic protocols

 A cryptographic protocol:

 Involves two or more parties 

 Often combines different primitives

 Accomplishes a more sophisticated task, 

e.g., tossing a coin over the phone
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Example cryptographic protocol

 Protocol for user identification 

 using a digital signature scheme

 Alice has a key pair (pk, sk)

 Alice → Bob: “I’m Alice”

 Alice ← Bob: a random challenge c

 Alice → Bob: a response s = Signsk(c)

 Bob checks if Verifypk(c,s) = true
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Is this protocol secure?

 Suppose Bob has a key pair (pk, sk)

 Alice → Bob: “I’m Alice”

 Alice ← Bob: “What’s your password?”

 Alice → Bob: a response c = Encpk(m), where 

m is Alice’s password

 Bob checks if Decsk(c) is correct.
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One-way functions

 Modern cryptosystems are based on (trapdoor) one-

way functions and difficult computational problems.

 A function f is one-way if it is easy to compute, but 

hard to invert.

 Easy to compute:

 Hard to compute:

 Trapdoor: some additional information that makes f -1

easy to compute.
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“Assumed” one-way functions

 No function has been proved one-way.

 Some functions are believed to be one-way.

 For example:

 Integer multiplication

 Discrete exponentiation

 Modular powers
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“Assumed” one-way functions

 

 
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  Integer multiplication:

     ( , )           ,  :  large primes

  Discrete exponentiation:

     ( ) mod        :  integers,  1

  Modular powers:

    ( ) mod        :  integers,  1
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Cryptanalysis

 Science of studying attacks against 

cryptographic schemes.

 Kerkhoff’s principle: the adversary knows 

all details about a cryptosystem except the 

secret key.

 Cryptography + Cryptanalysis = Cryptology
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Attacks on encryption schemes

 Attacks are different in  

 Objectives:  e.g. to obtain partial information about a 

plaintext, to fully decipher it, or to obtain the secret key

 Levels of computing power

 Amount of information available

 When studying the security of an encryption 

scheme, we need to specify the type of attacks.
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Different types of attacks

 Different types of attacks (classified by the amount of 

information that may be obtained by the attacker):

 Ciphertext-only attack

 Known-plaintext attack

 Chosen-plaintext attack (possibly adaptively)

 Chosen-ciphertext attack (possibly adaptively)

 Chosen plaintext & ciphertext attack (possibly 

adaptively)
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Ciphertext-only attacks

 Given: a ciphertext c

 Q: what is its plaintext of c?

 An encryption scheme at least must be 

able to resist this type of attacks.
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Known-plaintext attacks

 Given: (m1,c1), (m2,c2), …, (mk,ck) and a 

new ciphertext c. 

 Q: what is the plaintext of c?
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Chosen-plaintext attacks

 Given: (m1,c1), (m2,c2), …, (mk,ck), where  

m1, m2, …, mk are chosen by the adversary, 

and a new ciphertext c. 

 Q: what is the plaintext of c?

 Adaptively-chosen-plaintext attack: m1, m2, 

…, mk are chosen adaptively.
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Chosen-ciphertext attacks

 Given: (m1,c1), (m2,c2), …, (mk,ck), where 

c1, c2, …, ck are chosen b y the adversary; 

and a new ciphertext c. 

 Q: what is the plaintext of c?

 Adaptively-chosen-ciphertext attack: c1, c2, 

…, ck are chosen adaptively.



Different types of adversaries …

 Classified by the amount of computing

resources available by the adversary:

 The attacker has unbounded computing power 

 The attacker only has a polynomial amount of 

computing power (polynomial in some security 

parameter, typically the key length).
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Unconditional security

 Secure even if the adversary has infinite 

computational resources (CPU time and 

memory storage).

 For example, Vernam’s one-time pad is 

unconditionally secure against ciphertext-

only attack.
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Computational security

 Secure if the attacker has only polynomial 

amount of computational resources. 

 For example, RSA is considered    

computationally secure; it may take 

thousands years to decipher a ciphertext.  

 Why is RSA not unconditionally secure?
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