
1

Introduction

CSE 5351: Introduction to cryptography

Reading assignment:

Chapter 1 of Katz & Lindell

Cryptography

 Merriam-Webster Online Dictionary:

1. secret writing

2. the enciphering and deciphering of messages

in secret code or cipher.

 Modern cryptography is more than secret

writing.

2

3

Computationally Difficult Problems (One-Way Functions)

Pseudorandom
Generators &
Functions

Zero-Knowledge
Proof Systems

Encryption
Schemes

Crypto
Protocols

Sgn/MAC/hash
Schemes

APPLICATIONS

A Structural View of Cryptography

4

Basic objectives of cryptography

 Protecting data privacy (secret writing)

 Authentication:

 Message authentication: allowing the recipient to check if a

received message has been modified.

 Data origin authentication: allowing the recipient to verify the

origin of a received message.

 Entity authentication: allowing the entities of a (connection-

oriented) communication to authenticate each other.

 Non-repudiation: to prevent the sender from later denying that

he/she sent the message.

5

Main characters of cryptography

 Alice

 Bob

 Eve (eavesdropper, adversary)

6

Bob Alice

Eve

7

mcEnc Dec

Bob Alice

m

key k key k’

Encryption and secrecy

Plaintext ciphertext plaintext
(message)

8

Encryption and secrecy

 Encryption protects secrecy of transmitted

messages

 Encryption Enck : plaintext m → ciphertext c

 Decryption Deck’ : ciphertext c → plaintext m

 Encryption key:

 Decryption key:
 same or different

k

k





9

Private-key encryption

 Also called symmetric-key encryption

 Encryption key k = decryption key k’

 Dec(k, Enc(k,m)) = m

 Or, Deck(Enck(m)) = m

10

Example: Caesar’s shift cipher

 Plaintext: a sequence of English characters

m= m1m2…mt

 Each character represented as an integer in 0-25

 Key k: an integer in 0-25

 Enck(m) = c= c1c2…ct where ci=[(mi + k) mod 26]

 Deck(c) = m= m1m2…mt where mi= [(ci − k) mod 26]

 Example: Enc3(ohio) = rklr Dec3(rklr) = ohio

11

Public-key encryption

 Also called asymmetric encryption

 Using a pair of keys (pk, sk)

 pk is public, known to everyone (who wishes to know)

 sk is secret, known only to the key’s owner (say Alice)

 From pk, it is hard to derive sk.

 Decsk(Encpk(m)) = m.

12

mcE D

Bob Alice

m

Alice’s Alice’s
public key secret key

Public-key Encryption

Plaintext ciphertext plaintext

13

Example: RSA

 Public key (,)

 Secret key (,)

 Encryption: Enc () mod

 Decryption: Dec () mod

e

pk

d

sk

pk N e

sk N d

m m N

c c N





   

•

•

•

•    

14

Message authentication codes

 Ensuring data integrity using private keys.

 Alice and Bob share a private key k.

 Alice sends to Bob the augmented message

(m, x), where x = MACk(m).

 Bob on receiving (m′, x′), checks if x′ =

MACk(m′). If so, accepts m′ as authentic.

15

Digital signatures

 Ensuring data integrity and non-repudiation

using public-key methods

 s = Signsk(m)

 Verifypk(m′, s′) = true or false.

 Hash-then-sign: s = Signsk(h(m)), where h

is a cryptographic hash function.

16

Computationally Difficult Problems (One-Way Functions)

Pseudorandom
Generators &
Functions

Zero-Knowledge
Proof Systems

Encryption
Schemes

Crypto
Protocols

Sgn/MAC/hash
Schemes

APPLICATIONS

A Structural View of Cryptography

Pseudorandom generators (1)

 Randomness and security of cryptosystems

are closely related.

 Vernam’s one-time pad encryption scheme:

 To encrypt a message m (a string of bits)

 Randomly generate a bit string k



 c looks random to anyone not knowing the key k.
17

Encrypt as bit by bitm c m k 

Pseudorandom generators (2)

 Expensive to generate truly random bits.

 Psuedorandom generators are algorithms

that, on input a short random bit string,

generate a longer, random-like bit string.

18

19

Cryptographic primitives

 These are often regarded as basic

cryptographic primitives:

 Pseudorandom generators/functions

 Encryption schemes

 Cryptographic hash functions

 MACs, digital signatures

 They are often used as building blocks to build

cryptographic protocols.

20

Cryptographic protocols

 A cryptographic protocol:

 Involves two or more parties

 Often combines different primitives

 Accomplishes a more sophisticated task,

e.g., tossing a coin over the phone

21

Example cryptographic protocol

 Protocol for user identification

 using a digital signature scheme

 Alice has a key pair (pk, sk)

 Alice → Bob: “I’m Alice”

 Alice ← Bob: a random challenge c

 Alice → Bob: a response s = Signsk(c)

 Bob checks if Verifypk(c,s) = true

22

Is this protocol secure?

 Suppose Bob has a key pair (pk, sk)

 Alice → Bob: “I’m Alice”

 Alice ← Bob: “What’s your password?”

 Alice → Bob: a response c = Encpk(m), where

m is Alice’s password

 Bob checks if Decsk(c) is correct.

23

One-way functions

 Modern cryptosystems are based on (trapdoor) one-

way functions and difficult computational problems.

 A function f is one-way if it is easy to compute, but

hard to invert.

 Easy to compute:

 Hard to compute:

 Trapdoor: some additional information that makes f -1

easy to compute.

1

()

()

f

f

x f x

x f x






24

“Assumed” one-way functions

 No function has been proved one-way.

 Some functions are believed to be one-way.

 For example:

 Integer multiplication

 Discrete exponentiation

 Modular powers

25

“Assumed” one-way functions

 

 

 

 Integer multiplication:

 (,) , : large primes

 Discrete exponentiation:

 () mod : integers, 1

 Modular powers:

 () mod : integers, 1

x

b

f x y x y x y

f x b n x x n

f x x n x x n

 

  

•

•



•

 

26

Cryptanalysis

 Science of studying attacks against

cryptographic schemes.

 Kerkhoff’s principle: the adversary knows

all details about a cryptosystem except the

secret key.

 Cryptography + Cryptanalysis = Cryptology

27

Attacks on encryption schemes

 Attacks are different in

 Objectives: e.g. to obtain partial information about a

plaintext, to fully decipher it, or to obtain the secret key

 Levels of computing power

 Amount of information available

 When studying the security of an encryption

scheme, we need to specify the type of attacks.

28

Different types of attacks

 Different types of attacks (classified by the amount of

information that may be obtained by the attacker):

 Ciphertext-only attack

 Known-plaintext attack

 Chosen-plaintext attack (possibly adaptively)

 Chosen-ciphertext attack (possibly adaptively)

 Chosen plaintext & ciphertext attack (possibly

adaptively)

29

Ciphertext-only attacks

 Given: a ciphertext c

 Q: what is its plaintext of c?

 An encryption scheme at least must be

able to resist this type of attacks.

30

Known-plaintext attacks

 Given: (m1,c1), (m2,c2), …, (mk,ck) and a

new ciphertext c.

 Q: what is the plaintext of c?

31

Chosen-plaintext attacks

 Given: (m1,c1), (m2,c2), …, (mk,ck), where

m1, m2, …, mk are chosen by the adversary,

and a new ciphertext c.

 Q: what is the plaintext of c?

 Adaptively-chosen-plaintext attack: m1, m2,

…, mk are chosen adaptively.

32

Chosen-ciphertext attacks

 Given: (m1,c1), (m2,c2), …, (mk,ck), where

c1, c2, …, ck are chosen b y the adversary;

and a new ciphertext c.

 Q: what is the plaintext of c?

 Adaptively-chosen-ciphertext attack: c1, c2,

…, ck are chosen adaptively.

Different types of adversaries …

 Classified by the amount of computing

resources available by the adversary:

 The attacker has unbounded computing power

 The attacker only has a polynomial amount of

computing power (polynomial in some security

parameter, typically the key length).

33

34

Unconditional security

 Secure even if the adversary has infinite

computational resources (CPU time and

memory storage).

 For example, Vernam’s one-time pad is

unconditionally secure against ciphertext-

only attack.

35

Computational security

 Secure if the attacker has only polynomial

amount of computational resources.

 For example, RSA is considered

computationally secure; it may take

thousands years to decipher a ciphertext.

 Why is RSA not unconditionally secure?

36

Computational Difficulty (One-Way Functions)

Pseudorandom
Generators
and Functions

Zero-Knowledge
Proof Systems

Encryption
Schemes

Crypto
Protocols

Sign/MAC
Schemes

APPLICATIONS (security)

This course:

