Introduction

CSE 5351: Introduction to cryptography

1

Reading assignment:

Chapter 1 of Katz & Lindell

Cryptography

Merriam-Webster Online Dictionary:

- 1. secret writing
- 2. the enciphering and deciphering of messages in secret code or cipher.
- Modern cryptography is more than secret writing.

A Structural View of Cryptography

Computationally Difficult Problems (One-Way Functions)

Basic objectives of cryptography

- Protecting data privacy (secret writing)
- Authentication:
 - Message authentication: allowing the recipient to check if a received message has been modified.
 - Data origin authentication: allowing the recipient to verify the origin of a received message.
 - Entity authentication: allowing the entities of a (connectionoriented) communication to authenticate each other.
- Non-repudiation: to prevent the sender from later denying that he/she sent the message.

Main characters of cryptography

5

Eve (eavesdropper, adversary)

Encryption and secrecy

Encryption and secrecy

Encryption protects secrecy of transmitted

messages

Encryption Enc_k : plaintext $m \rightarrow ciphertext c$

Decryption Dec_{k} : ciphertext $c \rightarrow \text{plaintext} m$

Encryption key: kDecryption key: k'

8

Private-key encryption

- Also called symmetric-key encryption
- $\square Encryption key k = decryption key k'$
- $\Box \operatorname{Dec}(k, \operatorname{Enc}(k, m)) = m$
- $\Box \text{ Or, } \text{Dec}_k(\text{Enc}_k(m)) = m$

Example: Caesar's shift cipher

Plaintext: a sequence of English characters

 $m = m_1 m_2 \dots m_t$

- Each character represented as an integer in 0-25
- □ Key *k*: an integer in 0-25
- □ $Enc_k(m) = c = c_1 c_2 ... c_t$ where $c_i = [(m_i + k) \mod 26]$
- Dec_k(c) = $m = m_1 m_2 \dots m_t$ where $m_i = [(c_i k) \mod 26]$
- **D** Example: $Enc_3(ohio) = rklr$ $Dec_3(rklr) = ohio$

Public-key encryption

- Also called asymmetric encryption
- □ Using a pair of keys (*pk, sk*)
 - *pk* is public, known to everyone (who wishes to know)
 - *sk* is secret, known only to the key's owner (say Alice)
- From *pk*, it is hard to derive *sk*.
- $\square \operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(m)) = m.$

Public-key Encryption

Example: RSA

Public key pk = (N, e)
Secret key sk = (N, d)
Encryption: Enc_{pk}(m) = [m^e mod N]
Decryption: Dec_{sk}(c) = [c^d mod N]

Message authentication codes

- Ensuring data integrity using private keys.
- □ Alice and Bob share a private key *k*.
- □ Alice sends to Bob the augmented message (m, x), where $x = MAC_k(m)$.
- □ Bob on receiving (m', x'), checks if $x' = MAC_k(m')$. If so, accepts m' as authentic.

Digital signatures

- Ensuring data integrity and non-repudiation using public-key methods
- $\Box s = Sign_{sk}(m)$
- \Box Verify_{pk}(m', s') = true or false.
- Hash-then-sign: s = Sign_{sk}(h(m)), where h is a cryptographic hash function.

A Structural View of Cryptography

Computationally Difficult Problems (One-Way Functions)

Pseudorandom generators (1)

- Randomness and security of cryptosystems are closely related.
- Vernam's one-time pad encryption scheme:
 - To encrypt a message *m* (a string of bits)
 - Randomly generate a bit string k
 - Encrypt *m* as $c = m \oplus k$ bit by bit
 - c looks random to anyone not knowing the key k.

Pseudorandom generators (2)

- Expensive to generate truly random bits.
- Psuedorandom generators are algorithms that, on input a short random bit string, generate a longer, random-like bit string.

Cryptographic primitives

- These are often regarded as basic cryptographic primitives:
 - Pseudorandom generators/functions
 - Encryption schemes
 - Cryptographic hash functions
 - MACs, digital signatures
- They are often used as building blocks to build cryptographic protocols.

Cryptographic protocols

□ A cryptographic protocol:

Involves two or more parties

Often combines different primitives

Accomplishes a more sophisticated task, e.g., tossing a coin over the phone

Example cryptographic protocol

- Protocol for user identification
 - using a digital signature scheme
 - Alice has a key pair (pk, sk)
- \Box Alice \rightarrow Bob: "I'm Alice"
- \Box Alice \leftarrow Bob: a random challenge c
- □ Alice \rightarrow Bob: a response s = Sign_{sk}(c)
- □ Bob checks if $Verify_{pk}(c,s) = true$

Is this protocol secure?

- Suppose Bob has a key pair (pk, sk)
- \Box Alice \rightarrow Bob: "I'm Alice"
- \Box Alice \leftarrow Bob: "What's your password?"
- □ Alice \rightarrow Bob: a response c = Enc_{pk}(m), where m is Alice's password
- **D** Bob checks if $Dec_{sk}(c)$ is correct.

One-way functions

- Modern cryptosystems are based on (trapdoor) oneway functions and difficult computational problems.
- A function f is one-way if it is easy to compute, but hard to invert.
 - Easy to compute: $x \xrightarrow{f} f(x)$
 - Hard to compute: $x \leftarrow f^{-1} f(x)$
- Trapdoor: some additional information that makes f⁻¹ easy to compute.

"Assumed" one-way functions

- No function has been proved one-way.
- Some functions are believed to be one-way.
- For example:
 - Integer multiplication
 - Discrete exponentiation
 - Modular powers

"Assumed" one-way functions

- Integer multiplication: $f(x, y) = x \cdot y$ (x, y: large primes)
- Discrete exponentiation: $f(x) = b^x \mod n$ (x: integers, 1 < x < n)
- Modular powers: $f(x) = x^b \mod n$ (x: integers, 1 < x < n)

Cryptanalysis

- Science of studying attacks against cryptographic schemes.
- Kerkhoff's principle: the adversary knows all details about a cryptosystem except the secret key.
- Cryptography + Cryptanalysis = Cryptology

Attacks on encryption schemes

□ Attacks are different in

- Objectives: e.g. to obtain partial information about a plaintext, to fully decipher it, or to obtain the secret key
- Levels of computing power
- Amount of information available
- When studying the security of an encryption scheme, we need to specify the type of attacks.

Different types of attacks

- Different types of attacks (classified by the amount of information that may be obtained by the attacker):
 - Ciphertext-only attack
 - Known-plaintext attack
 - Chosen-plaintext attack (possibly adaptively)
 - Chosen-ciphertext attack (possibly adaptively)
 - Chosen plaintext & ciphertext attack (possibly adaptively)

Ciphertext-only attacks

Given: a ciphertext *c*

Q: what is its plaintext of *c*?

An encryption scheme at least must be able to resist this type of attacks.

Known-plaintext attacks

Given: $(m_1, c_1), (m_2, c_2), \dots, (m_k, c_k)$ and a

new ciphertext c.

Q: what is the plaintext of *c*?

Chosen-plaintext attacks

- Given: (m_1, c_1) , (m_2, c_2) , ..., (m_k, c_k) , where $m_1, m_2, ..., m_k$ are chosen by the adversary, and a new ciphertext *c*.
- Q: what is the plaintext of c?

□ Adaptively-chosen-plaintext attack: m_1 , m_2 , ..., m_k are chosen adaptively.

Chosen-ciphertext attacks

- □ Given: (m_1, c_1) , (m_2, c_2) , ..., (m_k, c_k) , where $c_1, c_2, ..., c_k$ are chosen by the adversary; and a new ciphertext *c*.
- Q: what is the plaintext of c?

□ Adaptively-chosen-ciphertext attack: c_1 , c_2 , ..., c_k are chosen adaptively.

Different types of adversaries ...

- Classified by the amount of computing resources available by the adversary:
 - The attacker has unbounded computing power
 - The attacker only has a polynomial amount of computing power (polynomial in some security parameter, typically the key length).

Unconditional security

Secure even if the adversary has infinite computational resources (CPU time and memory storage).

For example, Vernam's one-time pad is unconditionally secure against ciphertextonly attack.

Computational security

- Secure if the attacker has only polynomial amount of computational resources.
- For example, <u>RSA</u> is considered computationally secure; it may take thousands years to decipher a ciphertext.
 - Why is RSA not unconditionally secure?

This course:

Computational Difficulty (One-Way Functions)