Reflections on Failure in Post-Terascale Parallel Computing
2007 Int. Conf. on Parallel Processing, Xi’An China

Garth Gibson
Carnegie Mellon University and Panasas Inc.

DOE SciDAC Petascale Data Storage Institute (PDSI), www.pdsi-scidac.org
w/ Bianca Schroeder, Carnegie Mellon University (Univ. of Toronto soon)
& w/ Los Alamos (G. Grider), Lawrence Berkeley (W. Kramer), Sandia (L. Ward),
Oak Ridge (P. Roth), and Pacific Northwest (E. Felix) National Laboratories, and
Univ. of California at Santa Cruz (D. Long), and Univ. of Michigan (P. Honeyman)
Agenda

- Scaling thru PetaFLOPS era
- Storage driven by coping with failure: checkpoint/restart
- Balanced systems model
 - If constant mean time to interrupt
- But MTTI goes as # sockets
- Utilization at risk
- Fix checkpointing?
- Storage not allowed to restart
- Recovery becomes state of storage
LANL interrupt history

- Los Alamos releases root cause logs for:
 - 23,000 events causing application interruption
 - 22 clusters & 5000 nodes
 - Covers 9 years & continues
- Kicks off our work understanding pressure on storage bandwidth
 - Checkpoint/restart
- More recent failure logs released from NERSC, PNNL, PSC, 2 anonymous

Table 1. Overview of systems. Systems 1–18 are SMP-based, and systems 19–22 are NUMA-based.
What are common root causes of failures?

- Breakdown varies across systems
- Hardware and software most common root cause, and largest contributors to repair times
What do failure distributions look like?

- Failure rate with age does not always follow the traditional “bathtub”
 - Infant mortality may be seen for long into nominal lifetime
 - Steady state often not steady
- Time between failures in cluster not exponentially distributed
 - Much more variable
 - Time til next failure grows with time since last failure
LANL data has low & high density

Clusters of 2/4-way **SMPs**
- commodity components
- 100s to 1000s of nodes.

Clusters of **NUMAs**
- 128-256 procs per node
- 10s of nodes.

• Interruptions proportional to nodes? OSes? Procs?
System failure rate highly variable

- 4096 procs 1024 nodes
- 128 procs 32 nodes
- 6152 procs 49 nodes

Failures per year:
- 4-way 2001
- 2-way 2003
- 128-way 1996
- 256-way 2004

- 200
- 400
- 600
- 800
- 1000
- 1200
- 1400
- 1600
- 1800
- 2000

www.pdl.cmu.edu & www.pdsi-scidac.org
Garth Gibson © September 07
Best model: failures track # of processor chips

failures normalized by # procs

- 4096 procs, 1024 nodes
- 128 procs, 32 nodes
- 6152 procs, 49 nodes

Failures per year per proc

4-way 2001
2-way 2003
128-way 1996
256-way 2004
Petascale projections: more failures

- Con’t top500.org annual 2X peak FLOPS
 - Set to 1 PF plan for ORNL Baker, LANL Roadrunner in 2008
- Cycle time flat; Cores/chip on Moore’s law
 - Consider 2X cores per chip every 18, 24, 30 months
- # sockets, 1/MTTI = failure rate up 25%-50% per year
 - Optimistic 0.1 failures per year per socket (vs. historic 0.25)
Checkpointing for app failure tolerance

- Periodic \((p)\) pause to capture checkpoint \((t)\)
- On failure, roll back & restart from checkpoint
- Driven by tight coupling of parallel processes, esp. memory intensive
- Balanced systems
 - Memory size tracks FLOPS
 - Disk speed tracks both
 - Checkpoint capture \((t)\) constant
 - \(1 - \text{App util} = \frac{t}{p} + \frac{p}{2 \times \text{MTTI}}\); \(p^2 = 2 \times t \times \text{MTTI}\)
 - If MTTI was constant, app utilization would be too
More failures hurts app’s utilization

- Balanced: Mem, disk speed track FLOPS (constant t)
 - \[1 - \text{App util} = \frac{t}{p} + \frac{p}{2 \times \text{MTTI}}; p^2 = 2 \times t \times \text{MTTI}\]
 - Since MTTI is dropping, checkpoint interval drops,
- So Application utilization drops progressively faster
- Half machine gone soon and exascale era bleak
- Not acceptable
Storage bandwidth to the rescue?

- Increase storage bandwidth to counter for MTTI?
- First, balance requires storage bandwidth track FLOPS, 2X per year, but disks 20% faster each year
 - Number of disks up 67% each year just for balance!
- To also counter MTTI trend
 - # Disks up 130% / year!
 - Faster than sockets, faster than FLOPS!
 - If system cost grows as # disks vs # sockets
 - Total costs increasingly going into storage (even just for balance)
Smaller applications escape

• If an app uses $1/n$ of machine (sockets & memory)
 • $1 - \text{App util} = t/n \div p + p / (2 \times n \times \text{MTTI})$; $p^2 = 2 \times t/n \times n \times \text{MTTI}$
 • Checkpoint overhead of subset resources is reduced by n
 • Assume full storage bandwidth avail for small checkpoint

• If app uses constant resources, it counters MTTI
 • ie., less and less of biggest machine

• Peak machines, when sliced up, see less inefficiency
• But Hero Apps, those that motivate ever bigger machines, gain nothing
 • Hero Apps are primary target of revisiting checkpoint/restart
Applications squeeze checkpoints?

- So far, assumed checkpoint size is memory
- Could Apps counter MTTI with compression?
 - Lots of cycles for compression when saturating storage
- Size of checkpoint has to decrease with MTTI
 - Smaller fraction of memory with each machine
 - Drop 25-50% per year
- If possible ….
- Cache checkpoint in other node’s memory
- Decrease pressure on storage bandwidth and storage costs
Dedicated memory devices?

- Use memory to stage checkpoint
 - Fast write from node to stage memory
 - Short checkpoint capture time
 - Slower write from stage to disk
 - Finish before next checkpoint

- Where is checkpoint memory
 - Different fault domain from node memory
 - Can wrap onto other nodes, but “slow” writing is constant OS noise for compute
 - Limited by networking; will be parallel
 - Probably CPU-light compute nodes

- Maybe more costly than storage solution
 - Starts by doubling, or more, memory size
 - Maybe Flash if used only for checkpoints

[Diagram showing Compute Cluster, Checkpoint Memory, and Disk Storage Devices with arrows indicating fast and slow write processes.]
Change fault tolerance scheme?

• Classic reliable computing: process-pairs
 • Distributed, parallel simulation as transaction (message) processing
 • Automation possible w/ hypervisors
• Deliver all incoming messages to both
• Match outgoing messages from both
• 50% hardware overhead + slowdown of pair synch
• No stopping to checkpoint
 • Less pressure on storage bandwidth except for visualization checkpoints
Recap so far

• Failure rates proportional to number of components
 • Specifically, growing # sockets in parallel computer
• If peak compute continues to outstrip Moore’s law
 • MTTI will drop, forcing more checkpoints & restarts
• Hero apps, wanting all the resources, bear burden
 • Storage won’t keep up b/c cost; dedicated device similar
 • Squeezing checkpoint not believable; process pairs is

garth@cs.cmu.edu & www.pdsi-scidac.org
CFDR

- Gather & publish real failure data of computing at scale
- Community effort
 - USENIX clearinghouse
 - http://cfdr.usenix.org/
- Storage, networks, computers, etc
- Anonymized as needed
- Educate researchers
- DSN06, FAST07 papers
 - www.pdl.cmu.edu/FailureData/

The computer failure data repository (CFDR)

With the growing scale of today's IT installations, component failure is becoming an ever larger problem. Yet, virtually no data on failures in real systems is publicly available, forcing researchers working on system reliability to base their work on anecdotes and back of the envelope calculations, rather than empirical data.

The computer failure data repository (CFDR) aims at accelerating research on system reliability by filling the nearly empty collection of public data with detailed failure data from a variety of large production systems.

Please join us, either by contributing data, downloading data, or joining our mailing lists.

News

You are viewing a first draft of the CFDR. For feedback and comments please contact the moderators.

Available data

The table below provides an overview over the available data sets.

<table>
<thead>
<tr>
<th>Name</th>
<th>Time period</th>
<th>System type</th>
<th>Type of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANL</td>
<td>Dec 96 - Nov 05</td>
<td>HPC clusters</td>
<td>The data covers node outages at 22 cluster systems at LANL, including a total of 4,720 nodes and 24,101 processors. Some job logs and error logs are available as well.</td>
</tr>
<tr>
<td>HPC1</td>
<td>Aug 01 - May 06</td>
<td>HPC cluster</td>
<td>The data covers hardware replacements at a 765 node cluster with more than 3,000 hard drives.</td>
</tr>
<tr>
<td>HPC2</td>
<td>Jan 04 - Jul 06</td>
<td>HPC cluster</td>
<td>Hard drive replacements in a 256 node cluster with 520 drives.</td>
</tr>
<tr>
<td>HPC3</td>
<td>Dec 05 - Nov 06</td>
<td>HPC cluster</td>
<td>Hard drive replacements observed in a 1,532-node HPC cluster with more than 14,000 drives.</td>
</tr>
<tr>
<td>PNNL</td>
<td>Nov 03 - Sep 07</td>
<td>HPC cluster</td>
<td>Hardware failures recorded on the MPA2 system (a 980 node HPC cluster) at PNNL.</td>
</tr>
<tr>
<td>COM1</td>
<td>May 2006</td>
<td>Internet services cluster</td>
<td>Hardware failures recorded by an internet service provider and drawing from multiple distributed sites.</td>
</tr>
<tr>
<td>COM2</td>
<td>Sep 04 - Apr 06</td>
<td>Internet services cluster</td>
<td>Warranty service log of hardware failures aggregating events in multiple distributed sites.</td>
</tr>
<tr>
<td>COM3</td>
<td>Jan 05 - Dec 05</td>
<td>Internet services cluster</td>
<td>Aggregate quarterly statistics of disk failures at a large external storage system.</td>
</tr>
</tbody>
</table>
Failure data: hardware replacement logs

<table>
<thead>
<tr>
<th>Type of drive</th>
<th>Count</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18GB 10K RPM SCSI</td>
<td>3,400</td>
<td>5 yrs</td>
</tr>
<tr>
<td>36GB 10K RPM SCSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36GB 10K RPM SCSI</td>
<td>520</td>
<td>2.5 yrs</td>
</tr>
<tr>
<td>HPC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15K RPM SCSI</td>
<td>14,208</td>
<td>1 yr</td>
</tr>
<tr>
<td>15K RPM SCSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2K RPM SATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250GB SATA</td>
<td>13,634</td>
<td>3 yrs</td>
</tr>
<tr>
<td>500GB SATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400GB SATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td>26,734</td>
<td>1 month</td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td>39,039</td>
<td>1.5 yrs</td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td>3,700</td>
<td>1 yr</td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K RPM FC-AL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relative frequency of disk replacements

The top ten of replaced components

<table>
<thead>
<tr>
<th>HPC1</th>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard drive</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>Misc/Unk</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>PCI motherboard</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>QSW</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>MLB</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SCSI BP</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COM1</th>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Hard drive</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>SCSI Board</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>NIC Card</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>LV Power Board</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>CPU heatsink</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COM2</th>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard drive</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>Motherboard</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>RAID card</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>SCSI cable</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>CD-ROM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Raid Controller</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

- All hardware fails, though disks failures often common
Annual disk replacement rate (ARR)

- Datasheet MTTFs are 1,000,000 to 1,500,000 hours.

=> Expected annual replacement rate (ARR): 0.58 - 0.88 %.
Annual disk replacement rate (ARR)

- Datasheet MTTFs are 1,000,000 to 1,500,000 hours.
 => Expected annual replacement rate (ARR): 0.58 - 0.88 %.

- Poor evidence for SATA fail rates higher than SCSI or FC.
What do failure distributions look like?

• Failure rate with age does not follow the traditional “bathtub”
 • Infant mortality is mostly not seen by customers
 • Wear out often prominent effect

• Failures significantly clustered
 • Weeks of few/many failures predict few/many failures next week

![Graph showing failure distribution across years of operation.](image)

![Graph showing expected number of failures in a week.](image)
Non-exponential disk failures

• RAID failure depends on probability of a 2nd disk failure
 • during reconstruction (typically 10, growing to 100 hours)
• What is probability of a 2nd disk failure in the real world?
 • Need more than field failure rates, need measure of burstiness
While on storage issues …

- Balanced disk bandwidth: more disks & disk failures
- RAID (level 5, 6 or stronger codes) protect data
 - At cost of online reconstruction of all lost data
 - Larger disks: longer reconstructions, hours become days
- Consider # concurrent reconstructions
- 10-20% now, but ….
- Soon 100s of concurrent reconstructions
- Storage does not have checkpoint/restart model
- Design normal case for many failures
Closing

• Future parallel computing increasingly suffers failures
• Field data needs to be collected and shared
 • cfdr.usenix.org: please use and contribute
• Traditional fault tolerance needs to be revisited
 • Checkpointing needs new paradigms
• Systems need to be designed to operate in repair
 • Storage may be always repairing multiple failed disks

garth@cs.cmu.edu & www.pdsi-scidac.org