Reading Assignment: Chapter 22

1 Depth-First Search

procedure Search(\(G = (V, E)\))

// Assume \(V = \{1, 2, \ldots, n\}\) //

time \(\leftarrow\) 0;
\(vn[1..n] \leftarrow 0;\) /* \(vn\) stands for visit number */

for \(i \leftarrow 1\) to \(n\)
 if \(vn[i] = 0\) then call \(dfs(i)\)

procedure \(dfs(v)\)

\(vn[v] \leftarrow time \leftarrow time + 1;\)

for each node \(w\) such that \((v, w) \in E\) do
 if \(vn[w] = 0\) then call \(dfs(w)\);

\(fn[v] \leftarrow time \leftarrow time + 1\) /* \(fn\) stands for finish number */
2 Topological Sort

- Problem: given a directed graph $G = (V, E)$, obtain a linear ordering of the vertices such that for every edge $(u, v) \in E$, u appears in the ordering before v.

- Solution:
 - Use depth-first search, with an initially empty list L.
 - At the end of procedure $dfs(v)$, insert v to the front of L.
 - L gives a topological sort of the vertices.
3 Strongly Connected Components

- A directed graph is *strongly connected* if for every two nodes u and v there is a path from u to v and one from v to u.

- Decide if a graph G is strongly connected:
 - G is strongly connected iff (i) every node is reachable from node 1 and (ii) node 1 is reachable from every node.
 - The two conditions can be checked by applying $dfs(1)$ to G and to G^T, where G^T is the graph obtained from G by reversing the edges.

- A subgraph G' of a directed graph G is said to be a *strongly connected component* of G if G' is strongly connected and is not contained in any other strongly connected subgraph.

- An interesting problem is to find all strongly connected components of a directed graph. (Note that each node belongs to exactly one component.)
• Algorithm:

1. Apply depth-first search to G and compute $fn[u]$ for each node.
2. Compute G^T.
3. Apply depth-first search to G^T:

 $$visited[1..n] \leftarrow 0$$

 for each vertex u in decreasing order of $fn[u]$ do

 if $visited[u] = 0$ then call $dfs(u)$

4. The vertices on each tree in the depth-first forest of the preceding step form a strongly connected component.
4 Articulation Points and Biconnected Components

4.0.1 Definitions

- Let G be a connected, undirected graph.
- An articulation point of G is a vertex whose removal disconnects G.
- A bridge of G is an edge whose removal disconnects G.
- A graph with at least two edges is biconnected if it contains no articulation points.
- A biconnected component of G is a maximal biconnected subgraph.
- Each non-bridge edge belongs to exactly one biconnected component. (See Figure 23.10 on page 495 of the textbook.)
4.0.2 Identifying All Articulation Points

- Let G_π be any depth-first tree of G.
- An edge in G is a back edge iff it is not in G_π.
- The root of G_π is an articulation of G iff it has at least two children.
- A non-root vertex v in G_π is an articulation point of G iff v has a child w in G_π such that no vertex in subtree(w) is connected to a proper ancestor of v by a back edge. (subtree(w) denotes the subtree rooted at w in G_π.)

- Define

$$\text{low}[w] = \min \left\{ \frac{vn[w]}{vn[x]} : x \text{ is joined to some vertex in subtree}(w) \text{ by a back edge} \right\}$$

- A non-root vertex v in G_π is an articulation point of G iff v has a child w such that $\text{low}[w] \geq vn[v]$.

• Note that

\[low[v] = \min \begin{cases}
vn[v] \\
vn[w] : w \text{ is connected to } v \\
low[w] : w \text{ is a child of } v
\end{cases} \]

• Computing \(low[v] \) for each vertex \(v \):

\begin{algorithm}
procedure Art(v, u)
/* visit \(v \) from \(u \) */
\begin{align*}
low[v] &\leftarrow vn[v] \leftarrow time \leftarrow time + 1; \\
\text{for each vertex } w \neq u \text{ such that } (v, w) \in E \text{ do} \\
\quad \text{if } vn[w] = 0 \text{ then} \\
\quad \quad \text{call } Art(w, v) \\
\quad \quad low[v] \leftarrow \min\{low[v], low[w]\} \\
\quad \text{else} \\
\quad \quad low[v] \leftarrow \min\{low[v], vn[w]\} \\
\quad \text{endif}
\end{align*}
endfor
\end{algorithm}

• Initial call: \(Art(1, 0) \).