Note: There are three questions in this homework.

1. Given a directed acyclic graph $G = (V, E)$, write an $O(V^2)$ algorithm to determine whether for all pairs of nodes $u, v \in V$, there is a path from u to v or a path from v to u. Describe your algorithm in (high-level) pseudo-code and explain it in plain English. (Hint: topological sort.)

2. Let $G(V, E)$ be an undirected graph. Modify the following algorithm so that it answers whether G contains a cycle of odd length. Your modification must not increase the algorithm’s time complexity. Do NOT rewrite the whole algorithm; just make the necessary changes.

```plaintext
procedure Search(G = (V, E))
   // Assume V = {1, 2, ..., n} //
   // global variables: odd-cycle, visited[1..n] //
   visited[1..n] ← 0
   odd-cycle ← false
   for i ← 1 to n
      if visited[i] = 0 then call dfs(i)
   return odd-cycle

procedure dfs(v)
   visited[v] ← 1;
   for each node w such that (v, w) ∈ E do
      if visited[w] = 0 then call dfs(w);
```

1
3. Let $G = (V, E)$ be a directed graph. Modify the if statement in the dfs procedure (and modify nothing else) to determine if (v, w) is a tree, forward, back, or cross edge. Your modification must not increase the time complexity of the algorithm. Do NOT rewrite the whole algorithm; just make the necessary changes.

procedure $Search(G = (V, E))$

// Assume $V = \{1, 2, \ldots, n\}$ //
// $time$, $vn[1..n]$, and $fn[v]$ are global variables //

$\text{time} \leftarrow 0;$

$vn[1..n] \leftarrow 0;$

$fn[1..n] \leftarrow 0;$

for $i \leftarrow 1$ to n

if $vn[i] = 0$ then call $dfs(i)$

procedure $dfs(v)$

$vn[v] \leftarrow \text{time} \leftarrow \text{time} + 1;$

for each node w such that $(v, w) \in E$ do

if $vn[w] = 0$ then call $dfs(w);$

$fn[v] \leftarrow \text{time} \leftarrow \text{time} + 1$