Greedy Algorithms

CSE 780

Reading: Sections 16.1, 16.2, 16.3, Chapter 23.

1 Introduction

Optimization Problem:
Construct a sequence or a set of elements \{x_1, \ldots, x_k\} that satisfies given constraints and optimizes a given objective function.

The Greedy Method

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do }
\]

\[
\text{select an element for } x_i \text{ that looks best at the moment}
\]

Remarks

• The greedy method does not necessarily yield an optimum solution.

• Once you design a greedy algorithm, you typically need to do one of the following:
 1. Prove that your algorithm always generates optimal solutions (if that is the case).
 2. Prove that your algorithm always generates near-optimal solutions (especially if the problem is NP-hard).
 3. Show by simulation that your algorithm generates good solutions.

• A partial solution is said to be feasible if it is contained in an optimum solution. (An optimum solution is of course feasible.)

• A choice \(x_i\) is said to be correct if the resulting (partial) solution \(\{x_1, \ldots, x_i\}\) is feasible.

• If every choice made by the greedy algorithm is correct, then the final solution will be optimum.
2 Activity Selection Problem

Problem: Given n intervals (s_i, f_i), where $1 \leq i \leq n$, select a maximum number of mutually disjoint intervals.

Greedy Algorithm:

Greedy-Activity-Selector

Sort the intervals such that $f_1 \leq f_2 \leq \ldots \leq f_n$

$A \leftarrow \emptyset$

$f \leftarrow -\infty$

for $i \leftarrow 1$ to n

if $f \leq s_i$ then

include i in A

$f \leftarrow f_i$

return A
Proof of Optimality

Theorem 1 The solution generated by Greedy-Activity-Selector is optimum.

Proof. Let $A = (x_1, \ldots, x_k)$ be the solution generated by the greedy algorithm, where $x_1 < x_2 < \cdots < x_k$. It suffices to show the following two claims.

1. A is feasible.
2. No more interval can be added to A without violating the “mutually disjoint” property.

Claim (2) is obvious, and we will prove claim (1) by showing that for any i, $0 \leq i \leq k$, the (partial) solution $A_i = (x_1, \ldots, x_i)$ is feasible.

(A$_i$ is feasible if it is the prefix of an optimum solution.)

Induction Base: $A_0 = \emptyset$ is obviously feasible.

Induction Hypothesis: Assume A_i is feasible, where $0 \leq i < k$.

Induction Step: We need to show that A_{i+1} is feasible. By the induction hypothesis, A_i is a prefix of some optimum solution, say $B = (x_1, \ldots, x_i, y_{i+1}, \ldots, y_m)$.

- If $x_{i+1} = y_{i+1}$, then A_{i+1} is a prefix of B, and so feasible.
- If $x_{i+1} \neq y_{i+1}$, then $f_{x_{i+1}} \leq f_{y_{i+1}}$, i.e.,

 finish time of interval $x_{i+1} \leq$ finish time of interval y_{i+1}.

Substituting x_{i+1} for y_{i+1} in B yields an optimum solution that contains A_{i+1}. So, A_{i+1} is feasible.

Q.E.D.
3 Huffman Codes

Problem: Given a set of n characters, C, with each character $c \in C$ associated with a frequency $f(c)$, we want to find a binary code, $code(c)$, for each character $c \in C$, such that

1. no code is a prefix of some other code, and
2. $\sum_{c \in C} f(c) |code(c)|$ is minimum, where $|code(c)|$ denotes the length of $code(c)$.

(That is, given n nodes with each node associated with a frequency, use these n nodes as leaves and construct a binary tree T such that $\sum f(x) \text{depth}(x)$ is minimum, where x ranges over all leaves of T and $\text{depth}(x)$ means the depth of x in T. Note that such a tree must be full, every non-leaf node having two children.)

Greedy Algorithm:

Regard C as a forest with $|C|$ single-node trees
repeat
merge two trees with least frequencies
until it becomes a single tree
Implementation:

Huffman(C)

$n ← |C|$

initialize a priority queue, Q, to contain the n elements in C

for $i ← 1$ to $n - 1$ do

$z ← \text{Get-A-New-Node}()$

$left[z] ← x ← \text{Delete-Min}(Q)$

$right[z] ← y ← \text{Delete-Min}(Q)$

$f[z] ← f[x] + f[y]$

insert z to Q

return Q

Time Complexity: $O(n \log n)$. 5
Proof of Correctness:

The algorithm can be rewritten as:

\[
\text{Huffman}(C)
\]

\[
\begin{align*}
\text{if } |C| &= 1 \text{ then return a single-node tree; } \\
\text{let } x \text{ and } y \text{ be the two characters in } C \text{ with least frequencies; } \\
\text{let } C' &= C \cup \{z\} - \{x, y\}, \text{ where } z \not\in C \text{ and } f(z) = f(x) + f(y); \\
T' &\leftarrow \text{Huffman}(C'); \\
T &\leftarrow T' \text{ with two children } x, y \text{ added to } z; \\
\text{return } (T).
\end{align*}
\]

Lemma 1 If \(T'\) is optimal for \(C'\), then \(T\) is optimal for \(C\).

Proof. Assume \(T'\) is optimal for \(C'\). First observe that

\[
\text{Cost}(T) = \text{Cost}(T') + f(x) + f(y).
\]

To show \(T\) optimal, we let \(\alpha\) be any optimal binary tree for \(C\), and show \(\text{Cost}(T) \leq \text{Cost}(\alpha)\).

Claim: We can modify \(\alpha\) so that \(x\) and \(y\) are children of the same node, without increasing its cost.

Let \(\beta\) be the resulting tree, which has the same cost as \(\alpha\). Let \(z\) denote the common parent of \(x\) and \(y\). Let \(\beta'\) be the tree that is obtained from \(\beta\) by removing \(x\) and \(y\) from the tree. \(\beta'\) is a binary tree for \(C'\). We have the relation

\[
\text{Cost}(\beta) = \text{Cost}(\beta') + f(x) + f(y).
\]

Since \(T'\) is optimal for \(C'\),

\[
\text{Cost}(T') \leq \text{Cost}(\beta')
\]

which implies

\[
\text{Cost}(T) \leq \text{Cost}(\beta) = \text{Cost}(\alpha).
\]

Q.E.D.
Theorem 2 The Huffman algorithm produces an optimal prefix code.

Proof. By induction on $|C|$.

I.B.: If $|C| = 1$, it is trivial.

I.H.: Suppose that the Huffman code is optimal whenever $|C| \leq n - 1$.

I.S.: Now suppose that $|C| = n$. Let x and y be the two characters with least frequencies in C. Let C' be the alphabet that is obtained from C by replacing x and y with a new character z, with $f(z) = f(x) + f(y)$. $|C'| = n - 1$. By the induction hypothesis, the Huffman algorithm produces an optimal prefix code for C'. Let T' be the binary tree representing the Huffman code for C'. The binary tree representing the Huffman code for C is simply the tree T' with two nodes x and y added to it as children of z. By Lemma 1, the Huffman code is optimal. Q.E.D.
4 Minimum Spanning Trees

Problem: Given a connected weighted graph $G = (V, E)$, find a spanning tree of minimum cost.

Assume $V = \{1, 2, \ldots, n\}$.

4.1 Prim’s Algorithm

function Prim($G = (V, E)$)
 $E' \leftarrow \emptyset$
 $V' \leftarrow \{1\}$
 for $i \leftarrow 1$ to $n - 1$
 find an edge (u, v) of minimum cost such that $u \in V'$ and $v \notin V'$
 $E' \leftarrow E' \cup \{(u, v)\}$
 $V' \leftarrow V' \cup \{v\}$
 return(T)

Implementation:

- The given graph is represented by a two-dimensional array $cost[1..n, 1..n]$.

- To represent V', we use an array called $nearest[1..n]$, defined as below:

 $nearest[i] = \begin{cases} 0 & \text{if } i \in V' \\ \text{the node in } V' \text{ that is “nearest” to } i, & \text{if } i \notin V' \end{cases}$

- Initialization of $nearest$:

 $nearest(1) = 0$;

 $nearest(i) = 1$ for $i \neq 1$.
• To implement “find an edge \((u, v)\) of minimum cost such that \(u \in V'\) and \(v \notin V'\)”:

\[
\begin{align*}
\text{min} & \leftarrow \infty \\
\text{for } i & \leftarrow 1 \text{ to } n \\
& \quad \text{if nearest}(i) \neq 0 \text{ and cost}(i, \text{nearest}(i)) < \text{min} \text{ then} \\
& \quad \quad \text{min} \leftarrow \text{cost}(i, \text{nearest}(i)) \\
& \quad \quad v \leftarrow i \\
& \quad \quad u \leftarrow \text{nearest}(i)
\end{align*}
\]

• To implement “\(V' \leftarrow V' \cup \{v\}\)”, we update nearest as follows:

\[
\begin{align*}
\text{nearest}(v) & \leftarrow 0 \\
\text{for } i & \leftarrow 1 \text{ to } n \\
& \quad \text{if nearest}(i) \neq 0 \text{ and cost}(i, v) < \text{cost}(i, \text{nearest}(i)) \text{ then} \\
& \quad \quad \text{nearest}(i) \leftarrow v
\end{align*}
\]

Complexity: \(O(n^2)\)
Correctness Proof:
A set of edges is said to be promising if it can be expanded to a minimum cost spanning tree. (The notion of “promising” is the same as that of “feasible”.)

Lemma 2 If a tree T is promising and $e = (u, v)$ is an edge of minimum cost such that u is in T and v is not, then $T \cup \{(u, v)\}$ is promising.

Proof. Let T_{min} be a minimum spanning tree of G such that $T \subseteq T_{\text{min}}$. If $e \in T_{\text{min}}$, then there is nothing to prove. If $e \notin T_{\text{min}}$, adding e to T_{min} will create a cycle. The cycle contains an edge $e' = (u', v') \neq e$ such that u' is in T and v' is not. Since e has minimum cost, $\text{cost}(e) \leq \text{cost}(e')$. Substituting e for e' will result in a spanning tree T'_{min} that contains $T \cup \{e\}$. Obviously, $\text{cost}(T'_{\text{min}}) \leq \text{cost}(T_{\text{min}})$. Therefore, T'_{min} is a minimum spanning tree, and $T \cup \{e\}$ is promising. Q.E.D.

Theorem 3 The tree generated by Prim’s algorithm has minimum cost.

Proof. Let $T_0 = \emptyset$ and T_i ($1 \leq i \leq n - 1$) be the tree as of the end of the ith iteration. T_0 is promising. By Lemma 1 and induction, T_1, \ldots, T_{n-1} are all promising. So, T_{n-1} is a minimum cost spanning tree. Q.E.D.
4.2 Kruskal’s Algorithm

Sort edges by increasing cost

\[T \leftarrow \emptyset \]

repeat

\((u, v) \leftarrow \text{next edge}\)

if adding \((u, v)\) to \(T\) will not creat a cycle then

\[T \leftarrow T \cup \{(u, v)\} \]

until \(T\) has \(n - 1\) edges

Analysis: If we use an array \(E[1..e]\) to represent the graph and use the union-find data structure to represent the forest \(T\), then the time complexity of Kruskal Algorithm is \(O(e \log n)\), where \(e\) is the number of edges in the graph.
4.3 The union-find data structure

There are \(N \) objects numbered 1, 2, \ldots, \(N \).

Initial situation:\{1\}, \{2\}, \ldots, \{N\}.

We expect to perform a sequence of \textit{find} and \textit{union} operations.

Data structure: use an integer array \(A[1..N] \) to represent the sets.

\begin{verbatim}
procedure init(A)
 for i ← 1 to N do A[i] ← 0

procedure find(x)
 i ← x
 while A[i] > 0 do i ← A[i]
 return(i)

procedure union(a, b)
 case
end
\end{verbatim}

\textbf{Theorem 4} After an arbitrary sequence of union operations starting from the initial situation, a tree containing \(k \) nodes will have a height at most \(\lfloor \log k \rfloor \).
5 Single Source Shortest Path

- Problem: Given an undirected, connected, weighted graph $G(V, E)$ and a node $s \in V$, find a shortest path between s and x for each $x \in V$. (Assume positive weights.)

- Assume $V = \{1, 2, \ldots, n\}$.

- Observation: a shortest path between s and v may only pass through nodes which are closer to s than v.

- That is, if $d(v_1) \leq d(v_2) \leq d(v_3) \leq \cdots \leq d(v_n)$, where $d(x)$ denotes the shortest distance between s and x, then shortest-path(s, v_k) may only pass through nodes in $\{v_1, \ldots, v_{k-1}\}$.

- This suggests that we compute shortest paths for nodes v_k in the order of $v_1, v_2, v_3, \ldots, v_n$.

- The resulting paths form a spanning tree.

- We will construct such a tree using an algorithm similar to Prim’s.
Dijkstra’s Algorithm ($G = (V, E), s$)

$D[s] \leftarrow 0$

$Parent[s] \leftarrow 0$

$V' \leftarrow \{s\}$

for $i \leftarrow 1$ to $n - 1$ do

\hspace{1em} find an edge (u, v) such that $u \in V', v \notin V'$

\hspace{1em} and $D[u] + length[u, v]$ is minimum;

\hspace{1em} $D[v] \leftarrow D[u] + length[u, v]$;

\hspace{1em} $Parent[v] \leftarrow u$;

\hspace{1em} $V' \leftarrow V' \cup \{v\}$;

endfor

Data Structures:

- The given graph: $length[1..n, 1..n]$.

- Shortest distances: $D[1..n]$, where $D[i]$ = the shortest distance between s and i. Initially, $D[s] = 0$.

- Shortest paths: $Parent[1..n]$. Initially, $Parent[s] = 0$.

- $nearest[1..n]$, where

\[
nearest[i] = \begin{cases}
0 & \text{if } i \in V' \\
\text{the node } x \text{ in } V' \text{ that} \\
\text{minimizes } D[x] + length[x, i], & \text{if } i \notin V'
\end{cases}
\]

Complexity: $O(n^2)$