1 Basic Depth-First Search

- Algorithm

```
procedure Search(G = (V, E))
  // Assume V = {1, 2, . . . , n} //
  // global array visited[1..n] //
  visited[1..n] ← 0;
  for i ← 1 to n
    if visited[i] = 0 then call dfs(i)

procedure dfs(v)
  visited[v] ← 1;
  for each node w such that (v, w) ∈ E do
    if visited[w] = 0 then call dfs(w)
```

- Questions
 - How to implement the for-loop (i) if an adjacency matrix is used to represent the graph and (ii) if adjacency lists are used?
 - How many times is dfs called in all?
 - How many times is “if visited[·] = 0” executed in all?
 - What’s the over-all time complexity of the command “for each node w such that (v, w) ∈ E”?

- Time complexity
 - Using adjacency matrix: $O(n^2)$
 - Using adjacency lists: $O(|V| + |E|)$
• Definitions

– Depth first tree/forest, denoted as G_π

– Tree edges: those edges in G_π

– Forward edges: those non-tree edges (u, v) connecting a vertex u to a descendant v.

– Back edges: those edges (u, v) connecting a vertex u to an ancestor v.

– Cross edges: all other edges.

– If G is undirected, then there is no distinction between forward edges and back edges. Just call them back edges.
2 Depth-First Search Revisted

procedure Search(G = (V, E))
 // Assume V = {1, 2, ..., n} //
 time ← 0;
 vn[1..n] ← 0; /* vn stands for visit number */
 for i ← 1 to n
 if vn[i] = 0 then call dfs(i)

procedure dfs(v)
 vn[v] ← time ← time + 1;
 for each node w such that (v, w) ∈ E do
 if vn[w] = 0 then call dfs(w);
 fn[v] ← time ← time + 1 /* fn stands for finish number */
3 Topological Sort

• Problem: given a directed acyclic graph \(G = (V, E) \), obtain a linear ordering of the vertices such that for every edge \((u, v) \in E \), \(u \) appears before \(v \) in the ordering.

• Solution:

 – Use depth-first search, with an initially empty list \(L \).

 – At the end of procedure \(dfs(v) \), insert \(v \) to the front of \(L \).

 – \(L \) gives a topological sort of the vertices.

• Observation: the list of nodes in the descending order of finish numbers yields a topological sort.
Strongly Connected Components

A directed graph is strongly connected if for every two nodes u and v there is a path from u to v and one from v to u.

Decide if a graph G is strongly connected:

- G is strongly connected iff (i) every node is reachable from node 1 and (ii) node 1 is reachable from every node.

- The two conditions can be checked by applying $dfs(1)$ to G and to G^T, where G^T is the graph obtained from G by reversing the edges.

A subgraph G' of a directed graph G is said to be a strongly connected component of G if G' is strongly connected and is not contained in any other strongly connected subgraph.

An interesting problem is to find all strongly connected components of a directed graph.

Each node belongs in exactly one component. So, we identify each component by its vertices.

The component containing v equals

$$
\{dfs(v) \text{ on } G\} \cap \{dfs(v) \text{ on } G^T\},
$$

where $\{dfs(v) \text{ on } G\}$ denotes the set of all vertices visited during $dfs(v)$ on G.
• Algorithm:

1. Apply depth-first search to G and compute $fn[u]$ for each node.
2. Compute G^T.
3. Apply depth-first search to G^T:

 \[
 \text{visited}[1..n] \leftarrow 0
 \]

 \[
 \text{for each vertex } u \text{ in decreasing order of } fn[u] \text{ do}
 \]

 \[
 \text{if visited}[u] = 0 \text{ then call dfs}(u)
 \]

4. The vertices on each tree in the depth-first forest of the preceding step form a strongly connected component.
5 Articulation Points and Biconnected Components

5.1 Definitions

- Let G be a connected, undirected graph.
- An articulation point of G is a vertex whose removal disconnects G.
- A bridge of G is an edge whose removal disconnects G.
- A graph is biconnected if it contains no articulation point.
- A biconnected component of G is a maximal biconnected subgraph.
- Each edge belongs to exactly one biconnected component. (See Figure 23.10 on page 495 of the textbook.)
- Note: for convenience, we have defined a single edge to be biconnected.
5.2 Identifying All Articulation Points

- Let G_π be any depth-first tree of G.
- An edge in G is a back edge iff it is not in G_π.
- The root of G_π is an articulation of G iff it has more than one child in G_π.
- A non-root vertex v in G_π is an articulation point of G iff v has a child w in G_π such that no vertex in subtree(w) is connected to a proper ancestor of v by a back edge. (subtree(w) denotes the subtree rooted at w in G_π.)

Define
\[\text{low}[w] = \min \{ \text{vn}[w], \text{vn}[x] : x \text{ is joined to some vertex in subtree}(w) \text{ by a back edge} \} \]

- A non-root vertex v in G_π is an articulation point of G iff v has a child w such that $\text{low}[w] \geq \text{vn}[v]$.

• Note that

\[low[v] = \min \begin{cases}
vn[v] & \text{if } w \text{ is connected to } v \text{ by a back edge} \\
vn[w] & \text{if } w \text{ is a child of } v
\end{cases} \]

• Computing \(low[v] \) for each vertex \(v \):

procedure \(\text{Art}(v, u) \)

/* visit \(v \) from \(u \) */

\(low[v] \leftarrow vn[v] \leftarrow \text{time} \leftarrow \text{time} + 1; \)

for each vertex \(w \neq u \) such that \((v, w) \in E \) do

if \(vn[w] = 0 \) then

call \(\text{Art}(w, v) \)

\(low[v] \leftarrow \min \{ low[v], low[w] \} \)

else

\(low[v] \leftarrow \min \{ low[v], vn[w] \} \)

endif

endfor

• Initial call: \(\text{Art}(1, 0) \).
• **Problem**: Print all articulation points.

```plaintext
procedure Art(v, u)
/* visit v from u */
low[v] ← vn[v] ← time ← time + 1;
for each vertex w ≠ u such that (v, w) ∈ E do
    if vn[w] = 0 then
        call Art(w, v)
        low[v] ← min{low[v], low[w]}
        if (vn[v] = 1) and (vn[w] ≠ 2) then
            print v is an articulation point
        if (vn[v] ≠ 1) and (low[w] ≥ vn[v]) then
            print v is an articulation point
        else
            low[v] ← min{low[v], vn[w]}
        endif
    endif
endfor
```

10
• **Problem:** Identify all biconnected components.

```plaintext
procedure Art(v, u)
  /* visit v from u */
  low[v] ← vn[v] ← time ← time + 1;
  for each vertex w ≠ u such that (v, w) ∈ E do
    if vn[w] < vn[v] then add (v, w) to Stack
    if vn[w] = 0 then
      call Art(w, v)
      low[v] ← min{low[v], low[w]}
    if low[w] ≥ vn[v] then
      Pop off all edges on top of Stack until (inclusively) edge (v, w)
      //these edges form a biconnected component//
    else
      low[v] ← min{low[v], vn[w]}
    endif
  endfor
```