CSE 6331 Homework 8
Due: Thursday, 11/2, by class time

Midterm II: Tuesday, 11/7, covering dynamic programming, greedy algorithms, elementary graph algorithms.

Note: There are three questions in this homework.

1. Given a directed acyclic graph $G = (V, E)$, write an $O(V^2)$ algorithm to determine whether for all pairs of nodes $u, v \in V$, there is a path from u to v or a path from v to u. Describe your algorithm in (high-level) pseudo-code and explain it in plain English. (Hint: topological sort.)

2. Let $G(V, E)$ be an undirected graph. Modify the following algorithm so that it answers whether G contains a cycle of odd length. Your modification must not increase the algorithm’s time complexity. Do NOT rewrite the whole algorithm; just make the necessary changes.

```plaintext
procedure Search(G = (V, E))
    // Assume V = \{1, 2, \ldots, n\}
    // global variables: odd-cycle, visited[1..n]
    visited[1..n] ← 0
    odd-cycle ← false

    for i ← 1 to n
        if visited[i] = 0 then call dfs(i)

    return odd-cycle

procedure dfs(v)
    visited[v] ← 1;

    for each node w such that (v, w) ∈ E do
        if visited[w] = 0 then call dfs(w);
```

1
3. Let $G = (V, E)$ be a directed graph. Modify the if statement in the dfs procedure (and modify nothing else) to determine if (v, w) is a tree, forward, back, or cross edge. Your modification must not increase the time complexity of the algorithm. Do NOT rewrite the whole algorithm; just make the necessary changes.

```
procedure Search($G = (V, E)$)

// Assume $V = \{1, 2, \ldots, n\}$ //
// time, vn[1..n], and fn[v] are global variables //
time ← 0;
vn[1..n] ← 0;
fn[1..n] ← 0;

for $i ← 1$ to $n$
    if $vn[i] = 0$ then call dfs($i$)

procedure dfs($v$)

    $vn[v] ← time ← time + 1$;

    for each node $w$ such that $(v, w) \in E$ do
        if $vn[w] = 0$ then call dfs($w$);
    
    $fn[v] ← time ← time + 1$
```