1 Basic Depth-First Search

- Algorithm

procedure Search(G = (V, E))

// Assume V = {1, 2, ..., n} //

// global array visited[1..n] //

visited[1..n] ← 0;

for i ← 1 to n

 if visited[i] = 0 then call dfs(i)

procedure dfs(v)

 visited[v] ← 1;

 for each node w such that (v, w) ∈ E do

 if visited[w] = 0 then call dfs(w)

• Questions

- How to implement the for-loop (i) if an adjacency matrix
 is used to represent the graph and (ii) if adjacency lists are
 used?

- How many times is dfs called in all?

- How many times is “if visited[] = 0” executed in all?

- What’s the over-all time complexity of the command “for
 each node w such that (v, w) ∈ E”

• Time complexity

- Using adjacency matrix: \(O(n^2)\)

- Using adjacency lists: \(O(|V| + |E|)\)
• Definitions

– Depth first tree/forest, denoted as G_π
– Tree edges: those edges in G_π
– Forward edges: those non-tree edges (u, v) connecting a vertex u to a descendant v.
– Back edges: those edges (u, v) connecting a vertex u to an ancestor v.
– Cross edges: all other edges.
– If G is undirected, then there is no distinction between forward edges and back edges. Just call them back edges.
2 Depth-First Search Revisited

procedure Search\((G = (V, E))\)

// Assume \(V = \{1, 2, \ldots, n\}\) //

time \(\leftarrow 0;\)

d[1..n] \(\leftarrow 0;\) /* \(d\) stands for discovery time */

for \(i \leftarrow 1\) to \(n\)

\(\text{if } d[i] = 0 \text{ then call } dfs(i)\)

procedure dfs\((v)\)

d\([v]\) \(\leftarrow \text{time} \leftarrow \text{time} + 1;\)

for each node \(w\) such that \((v, w) \in E\) do

\(\text{if } d[w] = 0 \text{ then call } dfs(w);\)

\(f[v] \leftarrow \text{time} \leftarrow \text{time} + 1\) /* \(f\) stands for finishing time */
3 Topological Sort

- Problem: given a directed acyclic graph $G = (V, E)$, obtain a linear ordering of the vertices such that for every edge $(u, v) \in E$, u is ahead of v in the ordering.

- Solution:
 - Use depth-first search, with an initially empty list L.
 - At the end of procedure $dfs(v)$, insert v to the front of L.
 - L gives a topological sort of the vertices.

- Observation: the list of nodes in the descending order of finishing times yields a topological sort.
4 Strongly Connected Components

• A directed graph is *strongly connected* if for every two nodes \(u \) and \(v \) there is a path from \(u \) to \(v \) and one from \(v \) to \(u \).

• Decide if a graph \(G \) is strongly connected:

 - \(G \) is strongly connected iff (i) every node is reachable from node 1 and (ii) node 1 is reachable from every node.

 - The two conditions can be checked by applying \(dfs(1) \) to \(G \) and to \(G^T \), where \(G^T \) is the graph obtained from \(G \) by reversing the edges.

• A subgraph \(G' \) of a directed graph \(G \) is said to be a *strongly connected component* of \(G \) if \(G' \) is strongly connected and is not contained in any other strongly connected subgraph.

• An interesting problem is to find all strongly connected components of a directed graph.

• Each node belongs in exactly one component. So, we identify each component by its vertices.

• The component containing \(v \) equals

\[
\{dfs(v) \text{ on } G\} \cap \{dfs(v) \text{ on } G^T\},
\]

where \(\{dfs(v) \text{ on } G\} \) denotes the set of all vertices visited during \(dfs(v) \) on \(G \).
• Ideas:

– If \(C \) is a strongly connected component, define

\[
f(C) = \max\{f(x) : x \in C\}.
\]

– Let \(C, C' \) be two distinct strongly connected components. If there is an edge in \(G \) from \(C \) to \(C' \), then \(f(C) > f(C') \).

(In \(G \), edges between two strongly connected components go from the component with higher finishing time to the component with lower finishing time.)

– Let \(C, C' \) be two distinct strongly connected components. If there is an edge in \(G^T \) from \(C' \) to \(C \), then \(f(C) > f(C') \).

(In \(G^T \), edges between two strongly connected components go from the component with lower finishing time to the component with higher finishing time.)

• Algorithm:

1. Apply depth-first search to \(G \) and compute \(f[u] \) for each node.

2. Compute \(G^T \).

3. Apply the basic depth-first search to \(G^T \):

\[
\text{visited}[1..n] \leftarrow 0
\]

\[
\text{for each vertex } u \text{ in decreasing order of } f[u] \text{ do}
\]

\[
\text{if } \text{visited}[u] = 0 \text{ then call } dfs(u)
\]

4. The vertices on each tree in the depth-first forest of Step 3 form a strongly connected component.
5 Articulation Points and Biconnected Components

5.1 Definitions

- Let G be a connected, undirected graph.
- An articulation point of G is a vertex whose removal will disconnect G.
- A bridge of G is an edge whose removal will disconnect G.
- Definition: A (connected) graph is biconnected if it contains no articulation points.
- A biconnected component of G is a maximal biconnected subgraph.
- Each edge belongs to exactly one biconnected component.
5.2 Identifying All Articulation Points

- Let G_π be any depth-first tree of G.
- An edge in G is a back edge iff it is not in G_π.
- The root of G_π is an articulation of G iff it has at least two children.
- A non-root vertex v in G_π is an articulation point of G iff v has a child w in G_π such that no vertex in subtree(w) is connected to a proper ancestor of v by a back edge. (subtree(w) denotes the subtree rooted at w in G_π.)
- Define
 \[
 \text{low}[w] = \min \left\{ \frac{d[w]}{d[x]} : x \text{ is joined to some vertex in subtree}(w) \text{ by a back edge} \right\}
 \]
- A non-root vertex v in G_π is an articulation point of G iff v has a child w such that $\text{low}[w] \geq d[v]$.
Note that
\[\text{low}[v] = \min \left\{ \begin{array}{ll} d[v] & : w \text{ is connected to } v \text{ by a back edge} \\ d[w] : w \text{ is a child of } v \end{array} \right. \]

Computing low[v] for each vertex v:

procedure Art(v, u)

/* visit v from u */
\[\text{low}[v] \leftarrow d[v] \leftarrow \text{time} \leftarrow \text{time} + 1; \]
for each vertex \(w \neq u \) such that \((v, w) \in E\) do
 if \(d[w] = 0 \) then
 call Art(w, v)
 \[\text{low}[v] \leftarrow \min\{\text{low}[v], \text{low}[w]\} \]
 else
 \[\text{low}[v] \leftarrow \min\{\text{low}[v], d[w]\} \]
endif
endfor

Initial call: Art(1, 0).
• **Problem:** Print all articulation points.

```plaintext
procedure Art(v, u)
    /* visit v from u */
    low[v] ← d[v] ← time ← time + 1;
    for each vertex w ≠ u such that (v, w) ∈ E do
        if d[w] = 0 then
            call Art(w, v)
            low[v] ← min{low[v], low[w]}
        if (d[v] = 1) and (d[w] ≠ 2) then
            print v is an articulation point
        if (d[v] ≠ 1) and (low[w] ≥ d[v]) then
            print v is an articulation point
        else
            low[v] ← min{low[v], d[w]}
        endif
    endfor
```

10
• **Problem:** Identify all biconnected components.

procedure \textit{Art}(v, u)

\[/* \text{visit } v \text{ from } u */\]

\[low[v] \leftarrow d[v] \leftarrow time \leftarrow time + 1;\]

\[\text{for each vertex } w \neq u \text{ such that } (v, w) \in E \text{ do}\]

\[\text{if } d[w] < d[v] \text{ then add } (v, w) \text{ to Stack}\]

\[\text{if } d[w] = 0 \text{ then}\]

\[\text{call } \textit{Art}(w, v)\]

\[low[v] \leftarrow \min\{low[v], low[w]\}\]

\[\text{if } low[w] \geq d[v] \text{ then}\]

\[\text{Pop off all edges from Stack till edge } (v, w)\]

\[//\text{these edges form a biconnected component}//\]

\[\text{else}\]

\[low[v] \leftarrow \min\{low[v], d[w]\}\]

\[\text{endif}\]

\[\text{endfor}\]