Dynamic Programming

Reading: CLRS Chapter 15 & Section 25.2

CSE 6331: Algorithms

Steve Lai
Optimization Problems

- Problems that can be solved by dynamic programming are typically optimization problems.
- Optimization problems: Construct a set or a sequence of elements \(\{y_1, \ldots, y_k\} \) that satisfies a given constraint and optimizes a given objective function.
- The closest pair problem is an optimization problem.
- The convex hull problem is an optimization problem.
Problems and Subproblems

• Consider the closest pair problem:
 Given a set of n points, $A = \{p_1, p_2, p_3, \ldots, p_n\}$, find a closest pair in A.

• Let $P(i, j)$ denote the problem of finding a closest pair in $A_{ij} = \{p_i, p_{i+1}, \ldots, p_j\}$, where $1 \leq i \leq j \leq n$.

• We have a class of similar problems, indexed by (i, j).

• The original problem is $P(1, n)$.
Dynamic Programming: basic ideas

- Problem: construct an optimal solution \((x_1, \ldots, x_k)\).
- There are several options for \(x_1\), say, \(op_1, op_2, \ldots, op_d\).
- Each option \(op_j\) leads to a subproblem \(P_j\): given \(x_1 = op_j\), find an optimal solution \((x_1 = op_j, x_{2,j}, \ldots, x_{k,j})\).
- The best of these optimal solutions, i.e.,
 \[
 \text{Best of } \left\{ (x_1 = op_j, x_{2,j}, \ldots, x_{k,j}) : 1 \leq j \leq d \right\}
 \]
is an optimal solution to the original problem.
- DP works only if the \(P_j\) is a problem similar to the original problem.
Dynamic Programming: basic ideas

- Apply the same reasoning to each subproblem, sub-subproblem, sub-sub-subproblem, and so on.
- Have a tree of the original problem (root) and subproblems.
- Dynamic programming works when these subproblems have many duplicates, are of the same type, and we can describe them using, typically, one or two parameters.
- The tree of problem/subproblems (which is of exponential size) now condensed to a smaller, polynomial-size graph.
- Now solve the subproblems from the "leaves".
Design a Dynamic Programming Algorithm

1. View the problem as constructing an opt. seq. $\left(x_1, \ldots, x_k\right)$.
2. There are several options for x_1, say, op_1, op_2, \ldots, op_d. Each option op_j leads to a subproblem.
3. Denote each problem/subproblem by a small number of parameters, the fewer the better. E.g., $P(i, j)$, $1 \leq i \leq j \leq n$.
4. Define the objective function to be optimized using these parameter(s). E.g., $f(i, j) = \text{the optimal value of } P(i, j)$.
5. Formulate a recurrence relation.
6. Determine the boundary condition and the goal.
7. Implement the algorithm.
Shortest Path

- Problem: Let $G = (V, E)$ be a directed acyclic graph (DAG). Let G be represented by a matrix:

$$d(i, j) = \begin{cases}
\text{length of edge } (i, j) & \text{if } (i, j) \in E \\
0 & \text{if } i = j \\
\infty & \text{otherwise}
\end{cases}$$

Find a shortest path from a given node u to a given node v.
Dynamic Programming Solution

1. View the problem as constructing an opt. seq. \((x_1, \ldots, x_k)\).

Here we want to find a sequence of nodes \((x_1, \ldots, x_k)\) such that \((u, x_1, \ldots, x_k, v)\) is a shortest path from \(u\) to \(v\).

2. There are several options for \(x_1\), say, \(op_1, op_2, \ldots, op_d\). Each option \(op_j\) leads to a subproblem.
 - Options for \(x_1\) are the nodes \(x\) which have an edge from \(u\).
 - The subproblem corresponding to option \(x\) is:
 Find a shortest path from \(x\) to \(v\).
3. Denote each problem/subproblem by a small number of parameters, the fewer the better.

4. Define the objective function to be optimized using these parameter(s).
 - These two steps are usually done simultaneously.
 - Let $f(x)$ denote the shortest distance from x to v.

5. Formulate a recurrence relation.
 $$f(x) = \min \{d(x, y) + f(y) : (x, y) \in E\}, \text{ if } x \neq v$$
 and out-degree(x) $\neq 0$.
6. Determine the boundary condition.

\[f(x) = \begin{cases}
0 & \text{if } x = \nu \\
\infty & \text{if } x \neq \nu \text{ and out-degree}(x) = 0
\end{cases} \]

7. What's the goal (objective)?

- Our goal is to compute \(f(u) \).
- Once we know how to compute \(f(u) \), it will be easy to construct a shortest path from \(u \) to \(\nu \).
- I.e., we compute the shortest distance from \(u \) to \(\nu \), and then construct a path having that distance.

8. Implement the algorithm.
Computing $f(u)$ (version 1)

function shortest(x)

// computing $f(x)$//

global $d[1..n, 1..n]$

if $x = v$ then return (0)

elseif out-degree(x) = 0 then return (∞)

else return $\left(\min \{d(x, y) + \text{shortest}(y) : (x, y) \in E \} \right)$

• Initial call: shortest(u)

• Question: What's the worst-case running time?
Computing $f(u)$ (version 2)

function shortest(x)

//computing $f(x)$//

global $d[1..n, 1..n], F[1..n], Next[1..n]$

if $F[x] = -1$ then

 if $x = v$ then $F[x] ← 0$

 elseif out-degree(x) = 0 then $F[x] ← \infty$

else

 $F[x] ← \min \{d(x, y) + \text{shortest}(y) : (x, y) \in E\}$

 $\text{Next}[x] ← \text{the node } y \text{ that yielded the min}$

return($F[x]$)
Main Program

procedure shortest-path(u, v)

 // find a shortest path from u to v //
 global d[1..n, 1..n], F[1..n], Next[1..n]
 initialize Next[v] ← 0
 initialize F[1..n] ← −1
 SD ← shortest(u) //shortest distance from u to v//
 if SD < ∞ then //print the shortest path//
 k ← u
 while k ≠ 0 do {write(k); k ← Next[k]}
Time Complexity

- Number of calls to shortest: $O(|E|)$
 - Is it $\Omega(|E|)$ or $\Theta(|E|)$?

- How much time is spent on shortest(x) for any x?
 - The first call: $O(1) +$ time to find x's outgoing edges
 - Subsequent calls: $O(1)$ per call

- The over-all worst-case running time of the algorithm is
 - $O(|E|) \cdot O(1) +$ time to find all nodes' outgoing edges
 - If the graph is represented by an adjacency matrix: $O\left(|V|^2\right)$
 - If the graph is represented by adjacency lists: $O(|V| + |E|)$
Forward vs Backward approach
Matrix-chain Multiplication

- Problem: Given n matrices M_1, M_2, \ldots, M_n, where M_i is of dimensions $d_{i-1} \times d_i$, we want to compute the product $M_1 \times M_2 \times \cdots \times M_n$ in a least expensive order, assuming that the cost for multiplying an $a \times b$ matrix by a $b \times c$ matrix is abc.

- Example: want to compute $A \times B \times C$, where A is 10×2, B is 2×5, C is 5×10.
 - Cost of computing $(A \times B) \times C$ is $100 + 500 = 600$
 - Cost of computing $A \times (B \times C)$ is $200 + 100 = 300$
Dynamic Programming Solution

- We want to determine an optimal \((x_1, \ldots, x_{n-1})\), where
 \(x_1\) means which two matrices to multiply first,
 \(x_2\) means which two matrices to multiply next, and
 \(x_{n-1}\) means which two matrices to multiply lastly.

- Consider \(x_{n-1}\). (Why not \(x_1\)?)

- There are \(n-1\) choices for \(x_{n-1}\):
 \[\left(M_1 \times \cdots \times M_k \right) \times \left(M_{k+1} \times \cdots \times M_n \right), \text{ where } 1 \leq k \leq n - 1. \]

- A general problem/subproblem is to multiply \(M_i \times \cdots \times M_j\), which can be naturally denoted by \(P(i, j)\).
Dynamic Programming Solution

• Let $Cost(i, j)$ denote the minimum cost for computing $M_i \times \cdots \times M_j$.

• Recurrence relation:

$$Cost(i, j) = \min_{i \leq k < j} \left\{ Cost(i, k) + Cost(k + 1, j) + d_{i-1} d_k d_j \right\}$$

for $1 \leq i < j \leq n$.

• Boundary condition: $Cost(i, i) = 0$ for $1 \leq i \leq n$.

• Goal: $Cost(1, n)$
Algorithm (recursive version)

function MinCost(i, j)

 global $d[0..n]$, $Cost[1..n, 1..n]$, $Cut[1..n, 1..n]$
 // initially, $Cost[i, j] ← 0$ if $i = j$, and $Cost[i, j] ← -1$ if $i ≠ j$
 if $Cost[i, j] < 0$ then
 $Cost[i, j] ← \min_{i ≤ k < j} \{ \operatorname{MinCost}(i, k) + \operatorname{MinCost}(k + 1, j) + d[i - 1] \cdot d[k] \cdot d[j] \}$
 $Cut[i, j] ←$ the index k that gave the minimum in the last statement

 return $(Cost[i, j])$
Algorithm (non-recursive version)

procedure MinCost

global $d[0..n]$, $Cost[1..n, 1..n]$, $Cut[1..n, 1..n]$

initialize $Cost[i, i] \leftarrow 0$ for $1 \leq i \leq n$

for $i \leftarrow n - 1$ to 1 do

for $j \leftarrow i + 1$ to n do

\[
Cost[i, j] \leftarrow \min_{i \leq k < j} \{ Cost(i, k) + Cost(k + 1, j) \}
\]

\[
+ d[i - 1] \cdot d[k] \cdot d[j]
\]

$Cut[i, j] \leftarrow$ the index k that gave the minimum in the last statement
Computing $M_i \times \cdots \times M_j$

function MatrixProduct(i, j)
// Return the product $M_i \times \cdots \times M_j$ //

global $Cut[1..n, 1..n]$, M_1, \ldots, M_n

if $i = j$ then return(M_i)
else

$k \leftarrow Cut[i, j]$

return($\text{MatrixProduct}(i, k) \times \text{MatrixProduct}(k + 1, j)$)

Time complexity: $\Theta(n^3)$
Paragraphing

- Problem: Typeset a sequence of words w_1, w_2, \ldots, w_n into a paragraph with minimum cost (penalty).

 Words: w_1, w_2, \ldots, w_n.

 $|w_i|$: length of w_i.

 L: length of each line.

 b: ideal width of space between two words.

 ϵ: minimum required space between words.

 b': actual width of space between words if the line is right justified.

- Assume that $|w_i| + \epsilon + |w_{i+1}| \leq L$ for all i.
If words \(w_i, w_{i+1}, \ldots, w_j \) are typeset as a line, where \(j \neq n \), the value of \(b' \) for that line is \(b' = \frac{L - \sum_{k=i}^{j} |w_k|}{(j - i)} \) and the penalty is defined as:

\[
Cost(i, j) = \begin{cases}
|b' - b| \cdot (j - i) & \text{if } b' \geq \varepsilon \\
\infty & \text{if } b' < \varepsilon
\end{cases}
\]

Right justification is not needed for the last line. So the width of space for setting \(w_i, w_{i+1}, \ldots, w_j \) when \(j = n \) is \(\min(b, b') \), and the penalty is

\[
Cost(i, j) = \begin{cases}
|b' - b| \cdot (j - i) & \text{if } \varepsilon \leq b' < b \\
0 & \text{if } b \leq b' \\
\infty & \text{if } b' < \varepsilon
\end{cases}
\]
Longest Common Subsequence

- Problem: Given two sequences
 \[A = (a_1, a_2, \ldots, a_n) \]
 \[B = (b_1, b_2, \ldots, b_n) \]
 find a longest common subsequence of \(A \) and \(B \).

- To solve it by dynamic programming, we view the problem as finding an optimal sequence \((x_1, x_2, \ldots, x_k)\) and ask: what choices are there for \(x_1 \)? (Or what choices are there for \(x_k \)?)
Approach 1 (not efficient)

- View \((x_1, x_2, \ldots)\) as a subsequence of \(A\).
- So, the choices for \(x_1\) are \(a_1, a_2, \ldots, a_n\).
- Let \(L(i, j)\) denote the length of a longest common subseq of \(A_i = (a_i, a_{i+1}, \ldots, a_n)\) and \(B_j = (b_j, b_{j+1}, \ldots, b_n)\).
- Let \(\varphi(k, j)\) be the index of the first character in \(B_j\) that is equal to \(a_k\), or \(n+1\) if no such character.

Recurrence:
\[
L(i, j) = \begin{cases}
1 + \max_{i \leq k \leq n, \varphi(k, j) \leq n} \{L(k+1, \varphi(k, j)+1)\} \\
0 & \text{if the set for the max is empty}
\end{cases}
\]

Boundary condition: \(L(n+1, j) = L(i, n+1) = 0, \ 1 \leq i, j \leq n+1\).

Running time: \(\Theta\left(n^3\right) + O\left(n^3\right) = \Theta\left(n^3\right)\)
Approach 2 (not efficient)

- View \((x_1, x_2, \ldots)\) as a sequence of 0/1, where \(x_i\) indicates whether or not to include \(a_i\).
- The choices for each \(x_i\) are 0 and 1.
- Let \(L(i, j)\) denote the length of a longest common subseq of \(A_i = (a_i, a_{i+1}, \ldots, a_n)\) and \(B_j = (b_j, b_{j+1}, \ldots, b_n)\).
- Recurrence:

\[
L(i, j) = \begin{cases}
\max \left[1 + L(i+1, \varphi(i, j)+1) \right] & \text{if } \varphi(i, j) \leq n \\
L(i+1, j) & \text{otherwise}
\end{cases}
\]

- Running time: \(\Theta(n^2) + O(n^3)\)
Algorithm (non-recursive)

procedure Compute-Array-L

global \(L[1..n+1, 1..n+1], \varphi[1..n, 1..n] \)

initialize \(L[i, n+1] \leftarrow 0, L[n+1, j] \leftarrow 0 \) for \(1 \leq i, j \leq n+1 \)

compute \(\varphi[1..n, 1..n] \)

for \(i \leftarrow n \) to 1 do

for \(j \leftarrow n \) to 1 do

\[\text{if } \varphi(i, j) \leq n \text{ then} \]
\[L[i, j] \leftarrow \max \{1 + L[i+1, \varphi(i, j)+1], L[i+1, j]\} \]

\[\text{else} \]
\[L[i, j] \leftarrow L[i+1, j] \]

Algorithm (recursive)

procedure Longest\((i, j) \)

//print the longest common subsequence/
//assume \(L[1..n+1, 1..n+1] \) has been computed/
global \(L[1..n+1, 1..n+1] \)

if \(L[i, j] = L[i + 1, j] \) then

Longest\((i + 1, j) \)

else

Print \((a_i)\)

Longest\((i + 1, \varphi(i, j) + 1) \)

Initial call: Longest\((1, 1) \)

\(28\)
Approach 3

- View \((x_1, x_2, \ldots)\) as a sequence of decisions, where
 \(x_1\) indicates whether to
 - include \(a_1 = b_1\) (if \(a_1 = b_1\))
 - exclude \(a_1\) or exclude \(b_1\) (if \(a_1 \neq b_1\))
- Let \(L(i, j)\) denote the length of a longest common subseq
 of \(A_i = (a_i, a_{i+1}, \ldots, a_n)\) and \(B_j = (b_j, b_{j+1}, \ldots, b_n)\).
- Recurrence:
 \[
 L(i, j) = \begin{cases}
 1 + L(i+1, j+1) & \text{if } a_i = b_j \\
 \max\{L(i+1, j), L(i, j+1)\} & \text{if } a_i \neq b_j
 \end{cases}
 \]
- Boundary:
 \(L(i, j) = 0\), if \(i = n+1\) or \(j = n+1\)
- Running time: \(\Theta(n^2)\)
All-Pair Shortest Paths

• Problem: Let $G(V, E)$ be a weighted directed graph. For every pair of nodes u, v, find a shortest path from u to v.

• DP approach:

 • $\forall u, v \in V$, we are looking for an optimal sequence (x_1, x_2, \ldots, x_k).

 • What choices are there for x_1?

 • To answer this, we need to know the meaning of x_1.
Approach 1

- x_1: the next node.
- What choices are there for x_1?
- How to describe a subproblem?
Approach 2

- x_1: going through node 1 or not?
- What choices are there for x_1?
- Taking the backward approach, we ask whether to go through node n or not.
- Let $D^k(i, j)$ be the length of a shortest path from i to j with intermediate nodes $\in\{1, 2, \ldots, k\}$.
- Then, $D^k(i, j) = \min\{D^{k-1}(i, j), D^{k-1}(i, k) + D^{k-1}(k, j)\}$.
-
 \[
 D^0(i, j) = \begin{cases}
 \text{weight of edge } (i, j) & \text{if } (i, j) \in E \\
 0 & \text{if } i = j \\
 \infty & \text{otherwise}
 \end{cases}
 \]
 \(1\)
Straightforward implementation

initialize $D^{0}[1..n, 1..n]$ by Eq. (1)

for $k \leftarrow 1$ to n do

 for $i \leftarrow 1$ to n do

 for $j \leftarrow 1$ to n do

 if $D^{k-1}[i, k] + D^{k-1}[k, j] < D^{k-1}[i, j]$ then

 $D^{k}[i, j] \leftarrow D^{k-1}[i, k] + D^{k-1}[k, j]$

 $P^{k}[i, j] \leftarrow 1$

 else $D^{k}[i, j] \leftarrow D^{k-1}[i, j]$

 $P^{k}[i, j] \leftarrow 0$
Print paths

Procedure $Path(k, i, j)$

//shortest path from i to j w/o going thru $k+1, \ldots, n$ //

global $D^k[1..n, 1..n], P^k[1..n, 1..n], 0 \leq k \leq n.$

if $k = 0$ then
 if $i = j$ then print i
 elseif $D^0(i, j) < \infty$ then print i, j
 else print "no path"
elseif $P^k[i, j] = 1$ then
 $Path(k - 1, i, k), Path(k - 1, k, j)$
else
 $Path(k - 1, i, j)$
Print paths

Procedure ShortestPath\((i, j)\)

//shortest path from \(i\) to \(j\) //

global \(D^k[1..n, 1..n], P^k[1..n, 1..n]\), \(0 \leq k \leq n\).

let \(k'\) ← \[
\begin{cases}
\text{the largest } k \text{ such that } P^k[i, j] = 1 \\
0 \text{ if no such } k
\end{cases}
\]

if \(k' = 0\) then

if \(i = j\) then print \(i\)

elseif \(D^0(i, j) < \infty\) then print \(i, j\)

else print "no path"

else

ShortestPath\((k' - 1, i, k')\), ShortestPath\((k' - 1, k', j)\)
Eliminate the k in $D^k[1..n, 1..n], P^k[1..n, 1..n]$

- If $i \neq k$ and $j \neq k$:

 We need $D^{k-1}[i, j]$ only for computing $D^k[i, j]$.
 Once $D^k[i, j]$ is computed, we don't need to keep $D^{k-1}[i, j]$.

- If $i = k$ or $j = k$:
 $D^k[i, j] = D^{k-1}[i, j]$.

- What does $P^k[i, j]$ indicate?

- Only need to know the largest k such that $P^k[i, j] = 1$.
Floyd's Algorithm

initialize $D[1..n, 1..n]$ by Eq. (1)
initialize $P[1..n, 1..n] \leftarrow 0$
for $k \leftarrow 1$ to n do
 for $i \leftarrow 1$ to n do
 for $j \leftarrow 1$ to n do
 if $D[i, k] + D[k, j] < D[i, j]$ then
 $D[i, j] \leftarrow D[i, k] + D[k, j]$
 $P[i, j] \leftarrow k$
Longest Nondecreasing Subsequence

- Problem: Given a sequence of integers
 \[A = (a_1, a_2, \ldots, a_n) \]
 find a longest nondecreasing subsequence of \(A \).
Sum of Subset

• Given a positive integer M and a multiset of positive integers $A = \{a_1, a_2, \ldots, a_n\}$, determine if there is a subset $B \subseteq A$ such that $\text{Sum}(B) = M$, where $\text{Sum}(B)$ denotes the sum of integers in B.

• This problem is NP-hard.
Job Scheduling on Two Machines

There are \(n \) jobs to be processed, and two machines \(A \) and \(B \) are available. If job \(i \) is processed on machine \(A \) then \(a_i \) units of time are needed. If it is processed on machine \(B \) then \(b_i \) units of processing time are needed. Because of the peculiarities of the jobs and the machines, it is possible that \(a_i > b_i \) for some \(i \) while \(a_j < b_j \) for some other \(j \). Schedule the jobs to minimize the completion time. (If jobs in \(J \) are processed by machine \(A \) and the rest by machine \(B \), the completion time is defined to be \(\max \left\{ \sum_{i \in J} a_i, \sum_{i \notin J} b_i \right\} \).)

Assume \(1 \leq a_i, b_i \leq 3 \) for all \(i \).