Complexity of Algorithms

• Analysis of algorithm: to predict the running time required by an algorithm.
• Elementary operations:
 – arithmetic & boolean operations: +, −, ×, /, mod, div, and, or
 – comparison: if $a < b$, if $a = b$, etc.
 – branching: go to
 – assignment: $a \leftarrow b$
 – and so on
• The **running time** of an algorithm is the number of elementary operations required for the algorithm.
• It depends on the size of the input and the data themselves.
• The **worst-case time complexity** of an algorithm is a function of the input size n:
 \[T(n) = \text{the worst case running time over all instances of size } n. \]
• The worst-case **asymptotic** time complexity is the worst case time complexity expressed in O, Ω, or Θ.
• The word **asymptotic** is often omitted.
O-Notation

Note: Unless otherwise stated, all functions considered in this class are assumed to be nonnegative.

- Conventional Definition: We say $f(n) = O(g(n))$ or $f(n)$ is $O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

- More Abstract Definition:

$$O(g(n)) = \left\{ f(n) : f(n) = O(g(n)) \text{ in the conventional meaning} \right\},$$

i.e., the set of all functions that are $O(g(n))$ in the conventional meaning.
• These expressions all mean the same thing:
 • $4n^2 + 3n = O(n^2)$
 • $4n^2 + 3n$ is $O(n^2)$
 • $4n^2 + 3n \in O(n^2)$
 • $4n^2 + 3n$ is in $O(n^2)$.
• Sometimes $O(g(n))$ is used to mean some function in the set $O(g(n))$ which we don't care to specify.
• Example: we may write:
 \[
 \text{Let } f(n) = 3n^2 + O(\log n).
 \]
Theorem 1

If \(f_1(n) = O(g_1(n)) \) and \(f_2(n) = O(g_2(n)) \), then

1. \(f_1(n) + f_2(n) = O(g_1(n) + g_2(n)) \)
2. \(f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n))) \)
3. \(f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n)) \)

Proof. There exist positive constants \(c_1, c_2 \) such that \(f_1(n) \leq c_1 g_1(n) \) and \(f_2(n) \leq c_2 g_2(n) \) for sufficiently large \(n \).

Thus,

\[
f_1(n) + f_2(n) \leq c_1 g_1(n) + c_2 g_2(n) \leq (c_1 + c_2) (g_1(n) + g_2(n)) \leq 2(c_1 + c_2) \max(g_1(n), g_2(n)) .
\]

By definition, 1 and 2 hold. 3 can be proved similarly.
Ω-Notation

- **Conventional Definition:** We say \(f(n) = \Omega(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \geq cg(n) \) for all \(n \geq n_0 \).

- **Or define \(Ω(g(n)) \) as a set:**

\[
Ω(g(n)) = \left\{ f(n) : f(n) = Ω(g(n)) \text{ in the conventional meaning} \right\}
\]

- **Theorem 2:** If \(f_1(n) = Ω(g_1(n)) \) and \(f_2(n) = Ω(g_2(n)) \), then

1. \(f_1(n) + f_2(n) = Ω(g_1(n) + g_2(n)) \)
2. \(f_1(n) + f_2(n) = Ω(\max(g_1(n), g_2(n))) \)
3. \(f_1(n) \cdot f_2(n) = Ω(g_1(n) \cdot g_2(n)) \)
Θ-Notation

- Conventional Definition: We say \(f(n) = \Theta(g(n)) \) if there exist positive constants \(c_1, c_2, \) and \(n_0 \) such that \(c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \). That is,

\[
f(n) = \Theta(g(n)) \equiv [f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))].
\]

- In terms of sets: \(\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \)

- Theorem 3: If \(f_1(n) = \Theta(g_1(n)) \) and \(f_2(n) = \Theta(g_2(n)) \), then
 1. \(f_1(n) + f_2(n) = \Theta(g_1(n) + g_2(n)) \)
 2. \(f_1(n) + f_2(n) = \Theta(\max(g_1(n), g_2(n))) \)
 3. \(f_1(n) \cdot f_2(n) = \Theta(g_1(n) \cdot g_2(n)) \)
o-Notation, ω-Notation

- Definition of o

\[f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \]

- Definition of ω

\[f(n) = \omega(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty. \]
Some Properties of Asymptotic Notation

- Transitive property: If \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \), then \(f(n) = O(h(n)) \).

- The transitive property also holds for \(\Omega \) and \(\Theta \).

- \(f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \).

- See the textbook for many others.
Asymptotic Notation with Multiple Parameters

- Definition: We say that \(f(m, n) = O(g(m, n)) \) iff

 there are positive constants \(c, m_0, n_0 \) such that

 \[f(m, n) \leq cg(m, n) \text{ for all } m \geq m_0 \text{ and } n \geq n_0. \]

- Again, we can define \(O(g(m, n)) \) as a set.

- \(\Omega(g(m, n)) \) and \(\Theta(g(m, n)) \) can be similarly defined.
Conditional Asymptotic Notation

- Let \(P(n) \) be a predicate. We write \(T(n) = O(f(n) \mid P(n)) \) iff there exist positive constants \(c, n_0 \) such that \(T(n) \leq c f(n) \) for all \(n \geq n_0 \) for which \(P(n) \) is true.

- Can similarly define \(\Omega(f(n) \mid P(n)) \) and \(\Theta(f(n) \mid P(n)) \).

- Example: Suppose for \(n \geq 0 \),

\[
T(n) = \begin{cases}
4n^2 + 2n & \text{if } n \text{ is even} \\
3n & \text{if } n \text{ is odd}
\end{cases}
\]

Then, \(T(n) = \Theta(n^2 \mid n \text{ is even}) \)
Smooth Functions

- A function \(f(n) \) is **smooth** iff \(f(n) \) is asymptotically nondecreasing and \(f(2n) = O(f(n)) \).
- Thus, a smooth function does not grow very fast.
- Example: \(\log n, \ n \log n, \ n^2 \) are all smooth.
- What about \(2^n \)?
Theorem 4. If \(f(n) \) is smooth, then \(f(bn) = O(f(n)) \) for any fixed positive integer \(b \).

Proof. By induction on \(b \).

Induction base: For \(b = 1, 2 \), obviously \(f(bn) = O(f(n)) \).

Induction hypothesis: Assume \(f((b-1)n) = O(f(n)) \), where \(b > 2 \).

Induction step: Need to show \(f(bn) = O(f(n)) \). We have:

\[
 f(bn) \leq f(2(b-1)n) = O\left(f\left((b-1)n\right)\right) \subseteq O(f(n))
\]

(i.e., \(f(bn) \leq f(2(b-1)n) \leq c_1 f((b-1)n) \leq c_1 c_2 f(n) \) for some constants \(c_1, c_2 \) and sufficiently large \(n \)).

The theorem is proved.
• Theorem 5. If $T(n) = O(f(n) \mid n \text{ a power of } b)$, where $b \geq 2$ is a constant, $T(n)$ is asymptotically nondecreasing and $f(n)$ is smooth, then $T(n) = O(f(n))$.

Proof. From the given conditions, we know:
1. $T(n)$ is asymptotically nondecreasing.
2. $T(n) \leq c_1 f(n)$ for n sufficiently large and a power of b.
3. $f(bn) \leq c_2 f(n)$ for sufficiently large n.
For any n, there is a k such that $b^k \leq n < b^{k+1}$.
When n is sufficiently large, we have
\[T(n) \leq T(b^{k+1}) \leq c_1 f(b^{k+1}) \leq c_1 c_2 f(b^k) \leq c_1 c_2 f(n). \]
Be definition, $T(n) = O(f(n))$.

15
\[T(n) \leq T(b^{k+1}) \leq c_1 f(b^{k+1}) \leq c_1c_2 f(b^k) \leq c_1c_2 f(n). \]
Theorem 6. If \(T(n) = \Omega(f(n) \mid n \text{ a power of } b) \), where \(b \geq 2 \) is a constant, \(T(n) \) is asymptotically nondecreasing and \(f(n) \) is smooth, then \(T(n) = \Omega(f(n)) \).

Theorem 7. If \(T(n) = \Theta(f(n) \mid n \text{ a power of } b) \), where \(b \geq 2 \) is a constant, \(T(n) \) is asymptotically nondecreasing and \(f(n) \) is smooth, then \(T(n) = \Theta(f(n)) \).

Application. In order to show \(T(n) = O(n \log n) \), we only have to establish \(T(n) \leq O(n \log n \mid n \text{ a power of } 2) \), provided that \(T(n) \) is asymptotically nondecreasing.
Some Notations, Functions, Formulas

- \[\lfloor x \rfloor = \text{the floor of } x. \]
- \[\lceil x \rceil = \text{the ceiling of } x. \]
- \[\log n = \log_2 n. \text{ (Or } \lg n) \]
- \[1 + 2 + \cdots + n = n(n+1)/2 = \Theta(n^2). \]
- For constants \(k > 0, 1 + 2^k + 3^k + \cdots + n^k = \Theta(n^{k+1}). \)
- If \(a \neq 1, \text{ then } 1 + a + a^2 + \cdots + a^n = \frac{1-a^{n+1}}{1-a} = \frac{a^{n+1}-1}{a-1}. \]
- If \(a > 1, \text{ then } f(n) = 1 + a + a^2 + \cdots + a^n = \Theta(a^n). \)
- If \(a < 1, \text{ then } f(n) = 1 + a + a^2 + \cdots + a^n = \Theta(1). \)
Approximating summations by integration

- Suppose function f is increasing or decreasing.

\[\int_{m}^{n} f(x)dx \leq \sum_{i=m}^{n} f(i) \leq \int_{m}^{n} f(x)dx + \begin{cases} f(n) & f \text{ increasing} \\ f(m) & f \text{ decreasing} \end{cases} \]

- So, if f is increasing and $\int_{m}^{n} f(x)dx = \Omega(f(n))$, then

\[\sum_{i=m}^{n} f(i) = \Theta\left(\int_{m}^{n} f(x)dx\right) \]

- Similarly, if f is decreasing and $\int_{m}^{n} f(x)dx = \Omega(f(m))$, then

\[\sum_{i=m}^{n} f(i) = \Theta\left(\int_{m}^{n} f(x)dx\right) \]

- Example: $\sum_{i=m}^{n} \frac{1}{i} = \Theta\left(\int_{m}^{n} \frac{1}{x} dx\right) = \Theta\left(\ln n - \ln m\right) = \Theta\left(\lg n - \lg m\right)$
Analysis of Algorithm: Example

Procedure BinarySearch(A, x, i, j)

if $i > j$ then return(0)

$m \leftarrow \lfloor (i + j)/2 \rfloor$

case

$A[m] = x$: return(m)

$A[m] < x$: return(BinarySearch(A, x, $m + 1$, j))

$A[m] > x$: return(BinarySearch(A, x, i, $m - 1$))

depth
Analysis of Binary Search

Let $T(n)$ denote the worst-case running time. $T(n)$ satisfies the recurrence:

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + c.$$

Solving the recurrence yields:

$$T(n) = \Theta(\log n)$$
Euclid's Algorithm

- Find gcd(a, b) for integers a, b \geq 0, not both zero.

- Theorem: If b = 0, gcd(a, b) = a.

 If b > 0, gcd(a, b) = gcd(b, a \mod b)

- function Euclid(a, b)

 if b = 0
 then return(a)

 else return(Euclid(b, a \mod b))

- The running time is proportional to the number of recursive calls.
Analysis of Euclid's Algorithm

\[a_0 \quad b_0 \quad c_0 = a_0 \mod b_0 \]
\[a_1 \quad b_1 \quad c_1 = a_1 \mod b_1 \]
\[a_2 \quad b_2 \quad c_2 \]
\[\vdots \quad \vdots \quad \vdots \]
\[a_n \quad b_n \]

- Observe that \(a_k = b_{k-1} = c_{k-2} \).
- W.l.o.g., assume \(a_0 \geq b_0 \). The values \(a_0, a_2, a_4, \ldots \) decrease by at least one half with each recursive call.
- Reason: If \(c := a \mod b \), then \(c < a/2 \).
- So, there are most \(O(\log a_0) \) recursive calls.
Solution to Q4 of example analysis

\[\sum_{i=2^0, 2^1, 2^2, \ldots, 2^{\log n^2}} i^2 \]

\[= \sum_{k=0}^{\log n^2} (2^k)^2 = \sum_{k=0}^{\log n^2} 2^{2k} = \Theta \left(2^{2 \log n^2} \right) \]

\[= \Theta \left(2^{\log n^2} \right) = \Theta \left(n^4 \right) \]