Fully homomorphic encryption scheme using ideal lattices

Gentry’s STOC’09 paper - Part II
GGH cryptosystem

- Gentry’s scheme is a GGH-like scheme.
- GGH: Goldreich, Goldwasser, Halevi.
- Based on the hardness of ClosestVector Problem (CVP).
- Our discussion of GGH is variant by D. Micciancio:
Secret key

- The secret key is a "good" basis $R = (r_1, \ldots, r_n)$ of a lattice L.
 - For computational purpose, assume $L \subset \mathbb{Z}^n$.
 - The quantity $\rho_R = \frac{1}{2} \min \|r_i^*\|$ is relatively large.
 - We know: $\lambda_1(L) \geq \min \|r_i^*\|$; thus, $\lambda_1(L) \geq 2 \rho_R$.
 - Thus, the orthogonalized centered parallelepiped $C(R^*)$ is fat, containing a ball of radius ρ_R.
 - Any point $t \in \mathbb{Z}^n$ with $\text{dist}(t, L) < \rho_R$ can be corrected to the closest lattice point (using the nearest plane algorithm).
A good basis and the corresponding correction radius

Source: Daniele Micciancio's paper, CaLC 2001
Public key

- The public key is a "bad" basis $\mathbf{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_n)$ of L.
- For example, $\mathbf{B} = \text{HNF}(\mathbf{R})$.
- Its orthogonalized parallelepiped, $P(\mathbf{B}^*)$, is skiny.
- $\rho_B = \frac{1}{2} \min \| \mathbf{b}_i^* \|$ is much smaller than ρ_R.
- CVP (BDDC) is hard (w/o knowing \mathbf{R}) even if $\text{dist}(\mathbf{t}, L) < \rho_R$.
- Denote by $\mathbf{t} \mod \mathbf{B}$ the unique $\mathbf{s} \in P(\mathbf{B}^*)$ s.t.
 - \mathbf{s} is congruent to \mathbf{t} modulo L (i.e., $\mathbf{s} \equiv_L \mathbf{t}$ or $\mathbf{t} - \mathbf{s} \in L$).
- (Here we use $P(\mathbf{B}^*)$ as the representative system of \mathbb{R}^n / L.)
HNF basis and corresponding orthogonalized parallelepiped

Source: Daniele Micciancio's paper, CaLC 2001
Encryption and Decryption

- Encryption: to encrypt a message m,
 - Encode m as a vector r, $\|r\| < \rho_R$.
 - $c \leftarrow r \mod B$.

- Decryption: to decrypt a ciphertext c,
 - Recover r from c by $r \leftarrow c \mod R$.
 - Recover m from r.
Correcting small errors using the private basis

From Micciancio's paper
Is GGH homomorphic?

• If the encoding scheme is such that

\[
\begin{align*}
 m_1 &\rightarrow r_1 \\
 m_2 &\rightarrow r_2
\end{align*}
\]

\[\Rightarrow m_1 + m_2 \rightarrow r_1 + r_2\]

and if \(\|r_1\|, \|r_2\| < \rho_R/2 \), then GGH is additively homomorphic:

\[
\text{GGH}(m_1 + m_2) = \text{GGH}(m_1) +_{\text{mod } B} \text{GGH}(m_2)
\]

• How to make it multiplicatively homomorphc?
 • Genty's answer: use ideal lattices.
Ideals

Gentry’s scheme uses ideal lattices, which are lattices corresponding to some ideals
Rings

• A ring R is a set together with two binary operations $+$ and \times satisfying the following axioms:
 - $(R, +)$ is an abelian group.
 - \times is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$.
 - Distributive laws hold: $(a + b) \times c = (a \times c) + (b \times c)$ and $a \times (b + c) = (a \times b) + (a \times c)$.

• The ring R is commutative if $a \times b = b \times a$.

• The ring R is said to have an identity if there is an element $1 \in R$ with $a \times 1 = 1 \times a = a$ for all $a \in R$.

• We will only be interested in commutative rings with an identity.
Ideals

- An ideal I of a ring R is an additive subgroup of R s.t. $r \times I \subseteq I$ for all $r \in R$. (I.e., a subset $I \subseteq R$ s.t. $a - b \in I$ and $r \times a \in I$ for all $a, b \in I, r \in R$.)

- Example:
 - Consider the ring \mathbb{Z}.
 - For any integer a, $I_a = \{na : n \in \mathbb{Z}\}$ is an ideal.
 - Conversely, any ideal $I \subseteq \mathbb{Z}$ is equal to I_a for some $a \in \mathbb{Z}$.
 - The mapping $f : a \mapsto I_a$ is a bijective function from the set of nonnegative integers to the set of ideals of \mathbb{Z}.

- The name ideal comes from "ideal" numbers.
Some historical notes

- An algebraic integer is a number $x \in \mathbb{C}$ satisfying

 $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0$, where $a_i \in \mathbb{Z}$.

- The set of all algebraic integers forms a ring.

- For any algebraic integer α, $\mathbb{Z}[\alpha]$ denote the closure of $\mathbb{Z} \cup \{\alpha\}$ under $+, -, \times$.

- Example: $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$. Gaussian integers.

- $\mathbb{Z}[\alpha]$ resembles \mathbb{Z}, and many questions concerning \mathbb{Z} can be answered by considering $\mathbb{Z}[\alpha]$.
• For instance, **Format's theorem on sums of two squares**: an odd prime p can be expressed as $p = x^2 + y^2$ ($x, y \in \mathbb{Z}$) iff $p \equiv 1 \mod 4$.

• This theorem can be proved by showing that in $\mathbb{Z}[i]$

 - if $p \equiv 1 \mod 4$, then p factors into $p = (a + bi)(a - bi)$

 - if $p \equiv 3 \mod 4$, then p cannot be factored.

• While \mathbb{Z} has the **unique prime factorization** property, $\mathbb{Z}[\alpha]$ in general doesn't. For instance, in $\mathbb{Z} \left[\sqrt{-5} \right]$, 6 has two prime factorizations: $6 = 2 \cdot 3 = \left(1 + \sqrt{-5}\right)\left(1 - \sqrt{-5}\right)$.
• Eduard Kummer, inspired by the discovery of imaginary numbers, introduced \textit{ideal numbers}.

• For instance, in the example of $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$, we may define \textit{ideal prime numbers} p_1, p_2, p_3, p_4, which are subject to the rules:

$$p_1p_2 = 2, \quad p_3p_4 = 3, \quad p_1p_3 = 1 + \sqrt{-5}, \quad p_2p_4 = 1 - \sqrt{-5}.$$

• Then, 6 would have the unique prime factorization:

$$6 = p_1p_2p_3p_4.$$

• Kummer's concept of \textit{ideal numbers} was later replaced by that of \textit{ideals}, by Richard Dedekind.
Operations on Ideals

- Let I, J be ideals of the ring R.

- **Sum of ideals**: $I + J \triangleq \{a + b : a \in I, b \in J\}$, which is the smallest ideal containing both I and J.

- **Product of ideals**: $I \times J \triangleq$ the set of all finite sums of the form $a \times b$ with $a \in I, b \in J$. I.e., the smallest ideal containing $\{a \times b : a \in I, b \in J\}$. Thus, R is the identity.

- I divides J iff $I \supseteq J$. Thus, $\gcd(I, J) = (I, J) = I + J$.

- I is a **prime ideal** if $\forall a, b \in R, ab \in I \Rightarrow a \in I$ or $b \in I$.

- Two ideal I and J are **relatively prime** if $I + J = R$.

Generators and Bases of ideals

- Let B be any subset of a ring R.

- Denote by (B) the smallest ideal of R containing B, called the ideal generated by B. We have:

 $$(B) = \left\{ r_1 b_1 + \cdots + r_n b_n : r_i \in R, \ b_i \in B, \ n \in \mathbb{Z}^+ \right\}$$

- The ideal $I = (B)$ is finitely generated if B is finite, and is a principal ideal if B contains a single element.

- B is a basis of $I = (B)$ if it is linearly independent.
Cosets

- Let I be an ideal of a ring R.
- R is partitioned into cosets s.t. two elements $a, b \in R$ are in the same coset iff $a - b \in I$. $R = \bigcup_{a \in \mathbb{Z}} (I + a)$
- The coset containing a is $[a]_I = a + I = \{a + i : i \in I\}$.
- Define $[a]_I + [b]_I = [a + b]_I$ and $[a]_I \times [b]_I = [a \times b]_I$.
- The cosets form a ring R/I, called the quotient ring.
- Choose an element from each coset as a representative, then we have a system of representatives for R/I.
- For $x \in R$, denote by $x \mod I$ the element representing $[x]_I$.
Gentry’s Ideal-based Scheme
Notations

- Let I be an ideal of the ring R, and \mathbf{B}_I a basis of I.
- $R \mod \mathbf{B}_I$: a system of representatives for R/I defined by \mathbf{B}_I.
- If $\mathbf{B}_1 \neq \mathbf{B}_2$ are two bases for the same ideal, we have in general $x \mod \mathbf{B}_1 \neq x \mod \mathbf{B}_2$ (not necessarily equal).
- $\text{Samp}(x, \mathbf{B}_I)$: samples the coset $x + I$ according to some probability distribution.
- C: a circuit whose gates perform $+$ and \times operations $\mod \mathbf{B}_I$.
- $g(C)$: generalized C, the same as C but without $\mod \mathbf{B}_I$.
- C_{B_j}: same as C, but gates perform $\mod \mathbf{B}_j$ operations instead.
Σ: an ideal-based encryption scheme

- **KeyGen**\((R, B_I) \):
 - Input: a ring \(R \), a basis \(B_I \) of an ideal \(I \).
 - \((B_{sk}^J, B_{pk}^J) \leftarrow_R \text{IdealGen}(R, B_I) \).
 - Public key \(pk := B_{pk}^J \). Secret key \(sk := B_{sk}^J \).
 - Parameters: \((R, B_I, \text{Samp}) \), which are public info.
 - Plaintext space \(P := \) (a subset of) \(R \) mod \(B_I \)

- **Remarks**: As in GGH, \(B_{sk}^J \) is a good (fat) basis and \(B_{pk}^J \) a bad (skiny) one. The ideal \(I \) is used to encode plaintexts as ring elements.
• Encrypt(pk, π): \hspace{1em} // $\pi \in P$ //

$$\pi' \leftarrow \text{Samp}(\pi, B_I) \hspace{1em} // \text{an element in coset } \pi + I //$$

$$\psi \leftarrow \pi' \mod B_{j}^{pk} \hspace{1em} // \text{the ciphertext //}$$

• Decrypt(sk, ψ):

$$\pi \leftarrow (\psi \mod B_{j}^{sk}) \mod B_{I}$$

• Remarks:

 • π is encoded as a random element π' in the same coset.

 • π' is then encrypted as in GGH.

 • Decryption is correct if $\pi' \in R \mod B_{j}^{sk}$.
• **Evaluate**\((pk,C,\Psi)\):

 • Input: a public key \(pk\); a mod\(B_I\) circuit \(C\) composed of Add\(_{B_I}\) and Mult\(_{B_I}\) (and identity) gates; and ciphertexts \(\Psi = (\psi_1, \ldots, \psi_i)\), where \(\psi_i = \text{Encrypt}(pk, \pi_i)\), \(\pi_i \in P\).

 • Output: \(\psi := g(C)(\Psi) \mod B^{pk}_J\). \(// = g(C)(\Pi') \mod B^{pk}_J //\)

• **Remarks:**

 • Evaluate\((pk, \text{Add}_{B_I}, \psi_1, \psi_2)\): outputs \(\psi_1 + \psi_2 \mod B^{pk}_J\).

 • Evaluate\((pk, \text{Mult}_{B_I}, \psi_1, \psi_2)\): outputs \(\psi_1 \times \psi_2 \mod B^{pk}_J\).

 • Evaluate circuit \(C\) by evaluating its gates in a proper order.
Correctness: informal

- Evaluating C yields:

$$\psi := C_{B_j^{pk}}(\Psi) = g(C)(\Psi) \mod B_J^{pk} = g(C)(\Pi') \mod B_J^{pk}$$

where $\Pi = (\pi_1, \ldots, \pi_t)$

$$\xrightarrow{\text{encode}} \Pi' = (\pi'_1, \ldots, \pi'_t)$$

$$\xrightarrow{\mod B_J^{pk}} \Psi = (\psi_1, \ldots, \psi_t).$$

- Decrypting ψ will yield: $\pi := (\psi \mod B_J^{sk}) \mod B_I$.

- Correct if $g(C)(\Pi') \in R \mod B_J^{sk}$.

- Thus, if we restrict π'_1, \ldots, π' to be in certain region, the scheme will be homomorphic for circuits C for which $g(C)(\Pi') \in R \mod B_J^{sk}$.
Correctness of the ideal-based scheme Σ

- Let $X_{Enc} \triangleq \text{Samp}(B_I, M)$ and $X_{Dec} \triangleq R \mod B_{J}^{pk}$.

- A $\mod B_{I}$ circuit C (including the identity circuit) with $t \geq 1$ inputs is a permitted circuit w.r.t. the scheme if:
 \[
 \forall x_1, \ldots, x_t \in X_{Enc}, \ g(C)(x_1, \ldots, x_t) \in X_{Dec}.
 \]

- **Theorem:** If C_{Σ} is a set of permitted circuits containing the identity circuit, then the scheme is correct for C_{Σ}.
 - I.e., algorithm Decrypt correctly decrypts valid ciphertexts:
 \[
 C(\Pi) = \text{Decrypt}(sk, \text{Evaluate}(pk, C, \Psi)),
 \]
 where $C \in C_{\Sigma}$ and $\Psi \leftarrow \text{Encrypt}(sk, \Pi)$.
 - Valid ciphertexts: outputs of $\text{Evaluate}(pk, C, \Psi)$, $C \in C_{\Sigma}$.

coset $\pi + I$

Encrypt: $\pi \xrightarrow{\text{Samp}(B_J, \pi)} \pi' \xrightarrow{\text{mod } B_J^{pk}} \psi$

Decrypt: $\pi \xleftarrow{\text{mod } B_J} \psi' \xleftarrow{\text{mod } B_J^{sk}} \psi$

It works if $\pi' = \psi'$, i.e. if $\pi' \in R \mod B_J^{sk}$.
Q: Is $C(\Pi) = \text{Decrypt}(sk, C_{B_p^k}(\Psi)) \triangleq (C_{B_p^k}(\Psi) \mod B_{sk}^J) \mod B_I$?

$C(\Pi) = g(C)(\Pi') \mod B_I$

$g(C)(\Pi') \mod B_{pk}^J = C_{B_p^k}(\Psi)$

$g(C)(\Pi') \mod B_{sk}^J = C_{B_p^k}(\Psi) \mod B_{sk}^J$

$(g(C)(\Pi') \mod B_{sk}^J) \mod B_I = (C_{B_p^k}(\Psi) \mod B_{sk}^J) \mod B_I$

Yes, if $g(C)(\Pi') = g(C)(\Pi') \mod B_{sk}^J$, i.e., $g(C)(\Pi') \in R \mod B_{sk}^J$.
Security of the ideal-based scheme
Ideal Coset Problem (ICP)

- Let R be a ring, I an ideal, and \mathbf{B}_I a basis.
- IdealGen: an algorithm that given (R, \mathbf{B}_I) outputs two bases $\mathbf{B}^{\text{sk}}_J, \mathbf{B}^{\text{pk}}_J$ of the same ideal J.
- Samp$_1$: a random algorithm that samples R (non-uniformly).
- Ideal Coset Problem: Fix $R, \mathbf{B}_I, \text{IdealGen}, \text{Samp}_1$.
 - Challenger: $(\mathbf{B}^{\text{sk}}_J, \mathbf{B}^{\text{pk}}_J) \leftarrow_R \text{IdealGen}(R, \mathbf{B}_I)$. $b \leftarrow_u \{0, 1\}$.
 - If $b = 0$, then $r \leftarrow_R \text{Samp}_1(R)$, $t \leftarrow r \mod \mathbf{B}^{\text{pk}}_J$.
 - If $b = 1$, then $t \leftarrow_{\text{uniformly}} R \mod \mathbf{B}^{\text{pk}}_J$.
 - Adversary: given t and \mathbf{B}^{pk}_J, determine if $b = 0$ or 1.
- Essentially, the problem is to distinguish between:
 - \(b = 0 \): a coset \([t]_j\) is chosen according to some "Samp\(_1\)."
 - \(b = 1 \): a coset \([t]_j\) is chosen uniformly randomly.

- The hardness of ICP depends on Samp\(_1\).

- How does ICP connect to Gentry's encryption scheme \(\Sigma\)?
 - A ciphertext is essentially a coset \([\pi']_j\) chosen by Samp.
 - \(\Sigma\) is semantically secure if the ciphertext is random-like.
 - ICP is hard if coset \([t]_j\) chosen by Samp\(_1\) is random-like.

- Will show ICP \(\leq\) distinguishing ciphertexts of scheme \(\Sigma\).

- Will use Samp\(_1\) to define Samp.
Connect Samp to Samp$_1$

- $r \leftarrow \text{Samp}_1(R)$ samples an element in ring R.
- $x' \leftarrow \text{Samp}(x, B_I)$ samples an element in coset $[x]_I$.
- Wanted:

 r random $\Rightarrow x'$ random

- Let $I = (s) = R \times s$ be a principal ideal generated by s.

 Then, $[x]_I = x + R \times s$.

- Let $\text{Samp}(x, B_I) \triangleq x + \text{Samp}_1(R) \times s$.
Security of the ideal-based scheme Σ

- The Ideal Coset Problem is to distinguish between
 - $t \leftarrow \text{Samp}_1(R) \mod \mathcal{B}^\text{pk}_J$
 - $t \leftarrow \text{uniform}(R \mod \mathcal{B}^\text{pk}_J)$.

- Encrypt(pk, π):
 \[
 \psi \leftarrow \text{Samp}(\pi, \mathcal{B}_I) \mod \mathcal{B}^\text{pk}_J \\
 (\pi + \text{Samp}_1(R) \times s) \mod \mathcal{B}^\text{pk}_J
 \]

 where $I = (s) = R \times s$ is a principal ideal generated by s.
Theorem: If there is an algorithm A that breaks the semantic security of Σ with advantage ε when it uses Samp, then there is an algorithm B, running in about the same time as A, that solves the ICP with advantage $\varepsilon/2$.

Proof: The challenger of ICP sends B an instance $(t, B^j_{\mathbf{B}})$. B chooses an ideal $I = \langle s \rangle$ relatively prime to J and sets up the other parameters of Σ. We have two games:

1. the ICP game between Challenger and B (adversary), and
2. the Σ game between B (challenger) and A (adversary).

They run as follows.
where if \(b = 0 \), \(t \leftarrow \text{Samp}_1(R) \mod B_{J}^{pk} \); else, \(t \leftarrow_u R \mod B_{J}^{pk} \); and \(\psi_\beta \leftarrow (\pi_\beta + t \times s) \mod B_{J}^{pk} \).
• If $b = 0$, $t \leftarrow \text{Samp}_1(R) \mod B^p_k$ and $\psi_\beta = (\pi_\beta + t \times s) \mod B^p_k$
$$= \left(\pi_\beta + \text{Samp}_1(R) \times s\right) \mod B^p_k = \text{Encrypt}\left(B^p_k, \pi_\beta\right).$$

$\pi'_\beta \leftarrow \text{Samp}(\pi_\beta, B_I)$

$$\Pr[b = b' \mid b = 0] = \Pr[\beta = \beta' \mid b = 0] = 1/2 + \varepsilon.$$

• If $b = 1$, $t \leftarrow_{\text{uniform}} R \mod B^p_k$, so $\psi_\beta = (\pi_\beta + t \times s) \mod B^p_k$

is uniformly random (for $I = (s)$ is relatively prime to J
s^{-1} exists
$t \mapsto \pi_\beta + t \times s$ bijective
$\pi_\beta + t \times s$ uniform.)

$$\Pr[b = b' \mid b = 1] = \Pr[\beta \neq \beta' \mid b = 1] = 1/2.$$

• Thus, B has advantage $\varepsilon/2$.