Fully homomorphic encryption scheme using ideal lattices

Gentry’s STOC’09 paper - Part I
Homomorphic encryption

- **KeyGen**: On input 1^λ, outputs a pair of keys, (pk, sk).

- **Encrypt**: On input a public key pk and a plaintext $\pi \in M_{pk}$, outputs a ciphertext ψ. We write $\psi \leftarrow \text{Encrypt}(pk, \pi)$. (The plaintext space M_{pk} may depend on pk.)

- **Decrypt**: On input a secret key sk and a ciphertext ψ, outputs a plaintext π. We write $\pi \leftarrow \text{Decrypt}(sk, \psi)$.

- **Evaluate**: On input a circuit C, public key pk, ciphertexts (ψ_1, \ldots, ψ_t), outputs a ciphertext. We write $\psi \leftarrow \text{Evaluate}(pk, C, \psi_1, \ldots, \psi_t)$.
Correctness

• $\Sigma = (\text{KeyGen, Encrypt, Decrypt, Evaluate}).$

• The scheme Σ is correct for circuit C if for any plaintexts (π_1, \ldots, π_t) and any ciphertexts (ψ_1, \ldots, ψ_t) with $\psi_i \leftarrow \text{Encrypt}(pk, \pi_i)$, it holds that:

$$\psi \leftarrow \text{Evaluate}(pk, C, \psi_1, \ldots, \psi_t)$$

$$\Rightarrow C(\pi_1, \ldots, \pi_t) = \text{Decrypt}(sk, \psi)$$
Compactness

- \(\Sigma = (\text{KeyGen, Encrypt, Decrypt, Evaluate}) \).
- The scheme \(\Sigma \) is **compact** if the output ciphertext of Evaluate is independent (in length) of the input circuit \(C \); more specifically, Decrypt can be expressed as a circuit of size \(\text{poly}(\lambda) \).
- This is to avoid trivial solutions such as:
 - \(\text{Evaluate}(pk, C, \psi_1, \ldots, \psi_t) \) simply returns \(\psi := (C, \psi_1, \ldots, \psi_t) \) as the ciphertext.
 - \(\text{Decrypt}(sk, \psi) \) decrypts each \(\psi_i \) to \(\pi_i \) and computes \(C(\pi_1, \ldots, \pi_t) \).
Fully homomorphic encryption

- $\Sigma = (\text{KeyGen, Encrypt, Decrypt, Evaluate})$.
- \mathcal{C}: a class of circuits (including the identity circuit).
- Σ is \mathcal{C}-homomorphic if Σ is correct and compact for every circuit in \mathcal{C}.
- Σ is somewhat homomorphic if it is \mathcal{C}-homomorphic for some set of circuits \mathcal{C}.
- Σ is fully homomorphic if it is homomorphic for all circuits (i.e., \mathcal{C}-homomorphic for the set of all circuits \mathcal{C}).
Leveled fully homomorphic encryption

- $\Sigma^{(d)} = \left(\text{KeyGen}^{(d)}, \text{Encrypt}^{(d)}, \text{Decrypt}^{(d)}, \text{Evaluate}^{(d)}\right)$.

- A family of schemes $\{\Sigma^{(d)} : d \in \mathbb{Z}^+\}$ is said to be leveled fully homomorphic iff:
 - all schemes $\Sigma^{(d)}$ use the same decryption circuit,
 - $\Sigma^{(d)}$ is homomorphic for all circuits of depth up to d (that use some specified set of gates),
 - the computational complexity of $\Sigma^{(d)}$'s algorithms is polynomial in λ, d, and (in the case of $\text{Evaluate}^{(d)}$) the size of C.
Homomorphic encryption before Gentry

- The concept of fully homomorphic encryption, originally called privacy homomorphism, was proposed by Rivest, Adleman and Dertouzos in 1978 (one year after RSA was published).

- Homomorphic encryption schemes before 2009:
 - **Multiplicatively homomorphic**: RSA, ElGamal, etc.
 - **Additively homomorphic**: Goldwasser-Micali, Paillier, etc.
 - **Quadratic polynomials**: Boneh-Goh-Nissim
 - **Arbitrary circuits but with exponential ciphertext-size**: "Polly Craker" by Fellows and Koblitz
 - **NC^1 circuits** (poly-size, depth $O(\log n)$, using bounded fan-in AND, OR, and NOT gates): Sanders-Young-Yung
In 2009, Gentry proposed the first FHE scheme.

Three steps:
- Building a somewhat homomorphic encryption scheme using ideal lattices
- Squashing the Decryption Circuit
- Bootstrapping
Bootstrapping
Why does SH not imply FH?

- \{\text{AND, } \text{XOR}\}, \text{i.e., } \{+, \times\}, \text{ is a complete set of gates, from which any Boolean function can be constructed.}

- **False**: If an encryption scheme is \{+, \times\}-homomorphic, then it is fully homomorphic.

- **Reason**: Ciphertexts typically contain an "error" or "noise". When operations are performed on ciphertexts, errors grow. When the error becomes too large, the ciphertext cannot be correctly decrypted.
Example

- **Key:** a large odd integer p.

- **Encryp(p, m):** To encrypt a bit $m \in \{0, 1\}$, let $c = pq + 2r + m$, where q, r are random with $0 \leq 2r \ll p$. 2r is the noise.

- **Decryp(p, c):** let $m = (c \mod p) \mod 2$.

- If $c_1 = pq_1 + 2r_1 + m_1$ and $c_2 = pq_2 + 2r_2 + m_2$, then $c_1 + c_2$ is a ciphertext of $m_1 + m_2$, with noise $2(r_1 + r_2)$, and c_1c_2 is a ciphertext of m_1m_2, with noise $2(2r_1r_2 + r_1m_2 + m_1r_2)$.

- The noise grows!

- What if the noise becomes too large, say $2r > p$?
Challenge

• Can we have a \(\{+, \times\} \)-homomorphic encryption scheme without noises growing?

• That is, the ciphertexts output by Evaluate is as fresh as those output by Encrypt (in terms of amount of noise).

• Such a scheme will automatically be fully homomorphic.

• Gentry proposed a simple yet powerful strategy to achieve that (no noise growing): **Bootstrapping!**
Bootstrapping

• In a nut shell, bootstrapping is to perform (augmented) Decrypt homomorphically.
If we can evaluate decrypt homomorphically

- We can allow anyone to convert a ciphertext under key pk_A into a ciphertext under key pk_B w/o revealing the message.

Pink box:
- encrypted under pk_A.

Blue box:
- encrypted under pk_B.

May use WeakEncrypt
g-augmented decryption circuit

- g: a gate (with input and output in the plaintext space).
- g-augmented decryption circuit: illustrated below.

NAND-augmented Decrypt:

c_1, c_2 are ciphertexts of m_1, m_2 under key pk_A
If we can evaluate NAND-Decrypt homomorphically

- Encrypt all input using pk_B (figuratively, put them in a blue box).
- Evaluate NAND-Decrypt.
- We obtain a "fresh" ciphertext of $m_1 \text{ NAND } m_2$ under key pk_B.

![Diagram showing encryption and decryption process with a NAND gate]
If we can evaluate NAND-Decrypt homomorphically...

- then from the ciphertexts of m_1 and m_2 under pk_A, we can obtain a "fresh" ciphertext of $m_1 \text{ NAND } m_2$ under key pk_B, provided that the encryption of sk_A under pk_B is given.

- That is, we can perform $m_1 \text{ NAND } m_2$ homomorphically without increasing the noise.
Suppose we want to evaluate this circuit homomorphically, with m_1, m_2, m_3, m_4 encrypted under pk_A. Evaluate($C, \text{pk}_A, \psi_1, \psi_2, \psi_3, \psi_4$).
Evaluate Decrypt-NAND

skA

m_1 NAND m_2 NAND m_3 NAND m_4

Evaluate Decrypt-NAND

skB

Evaluate

$(m_1 \text{ NAND } m_2) \text{ NAND } (m_3 \text{ NAND } m_4)$
Bootstrappable encryption

- $\Sigma = (\text{KeyGen, Encrypt, Decrypt, Evaluate})$.
- Γ: a set of gates (with input/output in the plaintext space).
- $D_{\Sigma}(\Gamma)$: the set of g-augmented Decrypt, $g \in \Gamma$.
- \mathcal{C}: a class of circuits (including the identity circuit).
- Suppose Σ is \mathcal{C}-homomorphic.
- Σ is said to be bootstrappable with respect to Γ if $D_{\Sigma}(\Gamma) \subseteq \mathcal{C}$.
- If Σ is bootstrappable w.r.t. a complete set of gates Γ (including the identity gate), then we can construct a leveled fully homomorphic family of schemes $\{\Sigma^{(d)} : d \in \mathbb{Z}^+\}$ (for circuits with gates in Γ).
\[\Sigma^{(d)} : \text{homomorphic for circuits of depth} \leq d \]

- Assume \(\Sigma = (\text{KeyGen}, \text{Encrypt}, \text{Decrypt}, \text{Evaluate}) \) is bootstrappable w.r.t. a set of gates \(\Gamma \). We construct from \(\Sigma \)
 \[\Sigma^{(d)} = (\text{KeyGen}^{(d)}, \text{Encrypt}^{(d)}, \text{Decrypt}^{(d)}, \text{Evaluate}^{(d)}) \].

- \(\text{KeyGen}^{(d)} (\lambda, d) : \) //The same algorithm for all \(d \)//
 - Use \(\text{KeyGen} \) to generate \(d + 1 \) key pairs \((sk_i, pk_i) \), \(0 \leq i \leq d \).
 - Represent \(sk_i \) as a sequence of plaintexts: \(sk_i = (sk_{i1}, \ldots, sk_{i\ell}) \).
 - Encrypt (each element of) \(sk_i : \overline{sk_i} \leftarrow \text{Encrypt} (pk_{i-1}, sk_i) \).
 - Secret key: \(sk^{(d)} = sk_0 \).
 - Public key: \(pk^{(d)} = \left\{ \langle pk_i \rangle_{0 \leq i \leq d}, \langle \overline{sk_i} \rangle_{1 \leq i \leq d} \right\} \).
The rest are the evaluation key
- **Encrypt**\(^{(d)}\):
 - Input: a public key \(pk^{(d)} \) and a plaintext \(\pi \).
 - Output: ciphertext \(\psi \leftarrow \text{Encrypt}(pk^{(d)}, \pi) \).

- **Decrypt**\(^{(d)}\):
 - Input: a secret key \(sk^{(d)} \) and a ciphertext \(\psi \).
 - Output: ciphertext \(\pi \leftarrow \text{Decrypt}(sk^{(d)}, \psi) \).
 - Remark: \(\psi \) is assumed to be an output of \(\text{Evaluate}^{(d)} \).

What if \(\psi \) was produced by \(\text{Encrypt}^{(d)} \)?
Recursive procedure:

- **Evaluate**$^{(d)}(pk^{(d)}, C_d, \Psi_d)$:
 - Recursive procedure: **Evaluate**$^{(\delta)}(pk^{(\delta)}, C_\delta, \Psi_\delta)$.
 - C_δ has exactly δ levels; gates at level i are connected to gates at level $i - 1$. (Any circuit of depth $\leq \delta$ can be converted to such a circuit by inserting identity gates.)
 - Ψ_δ is a tuple of ciphertexts under pk_δ.
 - Initial call: **Evaluate**$^{(d)}(pk^{(d)}, C_d, \Psi_d)$.
Evaluate\(^{(\delta)}\) \((pk^{(\delta)}, C_\delta, \Psi_\delta)\)

\[\Psi_\delta \Rightarrow \text{under } pk_\delta\]

\[C_\delta\]
Evaluate$^{(δ)} \left(pk^{(δ)}, C_δ, Ψ_δ \right)$

\[\begin{align*}
\Psi_δ \\
sk_δ
\end{align*} \] \[\Rightarrow \]

$C_δ$ augmented with decryption circuits
Evaluate\(^{(\delta)}\) \(\left(pk^{(\delta)}, C_\delta, \Psi_\delta \right) \)

\[
\begin{align*}
&\Psi_\delta, sk_\delta \\
\Rightarrow &\text{Decrypt circuits} \\
\Rightarrow &\Psi_{\delta-1}
\end{align*}
\]

\(\Psi_\delta, sk_\delta\) encrypted under \(pk_{\delta-1}\)

\(C_{\delta-1}\)

level \(\delta-1\)
level 1
Call Evaluate\(^{(\delta-1)}\left(pk^{(\delta-1)}, C_{\delta-1}, \Psi_{\delta-1}\right)\)

\[\Psi_{\delta-1} \Rightarrow \text{under } pk_{\delta-1}\]
Evaluate\(^{(0)}\) \(\left(pk^{(0)}, C_0, \Psi_0 \right) \)

When \(\delta = 0 \), simply return \(\Psi_0 \),

which is under \(pk_0 \) and can be decrypted with \(sk^{(d)} = sk_0 \).
Correctness

- Theorem. If Σ is bootstrappable w.r.t. a complete set of gates Γ (including the identity gate), then the family $\left\{ \Sigma^{(d)} : d \in \mathbb{Z}^+ \right\}$ constructed above is leveled fully homomorphic (for circuits with gates in Γ).
- That is, $\text{Decrypt}^{(d)}$ correctly evaluate any circuit (composed of gates in Γ) of depth at most d.

Complexity

- **Theorem.** For a circuit C of depth d and size s (the number of wires), the time complexity of evaluating C is dominated by $O(s \cdot l)$ applications of Encrypt and $O(s)$ applications of Evaluate to $(g \in \Gamma)$-augmented decryption circuits, where $l = \ell(\lambda)$ is the number of "bits" of each ciphertext and sk.

- **Remark:** If the given circuit C has depth $< d$ and size s, it can be converted into a circuit of depth d and size at most sd.

- **Theorem.** For a circuit C of depth $\leq d$ and size s (the number of wires), the time complexity of evaluating C is dominated by $O(s \cdot l \cdot d)$ applications of Encrypt and $O(s \cdot d)$ applications of Evaluate to $(g \in \Gamma)$-augmented decryption circuits.
Theorem. If \(\Sigma \) is semantically secure, then
\[\Sigma^{(d)} \] is semantically secure for each \(d \).

Two questions:

- What's the meaning of semantic security for homomorphic encryption schemes?
- How to prove the theorem?
Semantic security game for public-key encryption

- **Challenger:** on input the security parameter λ,
 - generates a key pair (pk, sk),
 - sends pk to the adversary.

- **Adversary:** produces two messages m_0, m_1, and sends them to the challenger.

- **Challenger:** chooses a random bit $b \leftarrow \{0, 1\}$ and sends $c \leftarrow Enc_{pk}(m_b)$ to the adversary.

- **Adversary:** determines whether $b = 0$ or $b = 1$.

Question: Does this model apply to homomorphic encryption?
Semantic security for homomorphic encryption

- Is it different from that for ordinary public-key encryption? We will argue that it is the same.
- Since ciphertexts may be produced by Evaluate, a natural modification to the model is to let the adversary provide a circuit C and two inputs $m_0 = (m_{01}, \ldots, m_{0t})$, $m_1 = (m_{11}, \ldots, m_{1t})$.
- The challenger chooses $b \leftarrow \{0,1\}$, encrypts m_b as ψ, runs $\psi \leftarrow \text{Evaluate}(pk, C, \psi)$, and gives ψ to the adversary as the challenge ciphertext.
- The challenger may simply give ψ as the challenge ciphertext, since the adversary can run $\psi \leftarrow \text{Evaluate}(pk, C, \psi)$ itself.
• So, the semantic security game for homomorphic encryption is the same as the **multi-ciphertext** semantic security game for ordinary public-key encryption.

• It has been shown that an algorithm A that breaks the semantic security of the game with multiple ciphertexts can be used to construct an algorithm B that breaks the semantic security of the ordinary game. That is, breaking single-ciphertext semantic security \leq breaking multi-ciphertext semantic security.

• Therefore, to prove semantic security of a homomorphic encryption scheme, we can just use the semantic game for ordinary public-key encryption.
Why is it not trivial?

- Theorem. If Σ is semantically secure (and bootstrappable), then $\Sigma^{(d)}$ is semantically secure for each d.

$$pk_d \quad pk_{d-1} \quad \cdots \quad pk_1 \quad pk_0$$

$$sk_d \quad sk_{d-1} \quad \cdots \quad sk_1 \quad sk_0$$

These encrypted keys sk_i might leak information about the ciphertext (under pk_d), unless we prove otherwise.
Semantic Security Game k, $d \geq k \geq 0$.

- Game k is the same as the game for $\Sigma^{(d)}$ except that each sk_i, $d \geq i \geq 1$, is replaced by some sk_i' unrelated to pk_i:
 - $(sk_i', pk_i') \leftarrow \text{KeyGen}(1^\lambda)$
 - $sk_i' \leftarrow$ encryption of sk' under pk_{i-1}

- Game $d = \text{game for } \Sigma$. Game $0 = \text{game for } \Sigma^{(d)}$.

\[
\begin{array}{ccccccc}
 & pk_d & \cdots & pk_k & \cdots & pk_1 & pk_0 \\
\hline
 sk_d & \cdots & sk_k' & \cdots & sk_1' & sk_0
\end{array}
\]
To prove the theorem, assume the existence of an adversary A that has a non-negligible advantage against $\Sigma^{(d)}$ (Game 0). We construct an algorithm B that breaks Σ (Game d) with a non-negligible advantage. (B will use A as a "subroutine").

Let $\varepsilon_k(\lambda) = A$'s advantage in Game k. Apparently, $\varepsilon_d(\lambda) \leq \varepsilon_{d-1}(\lambda) \leq \cdots \leq \varepsilon_0(\lambda)$.

Two cases:

- $\varepsilon_d(\lambda)$ is non-negligible (A breaks Σ and we are done).
- $\varepsilon_d(\lambda)$ is negligible.

Assume $\varepsilon_d(\lambda)$ is negligible. There must exist a $d > k \geq 0$ such that $\varepsilon_k(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

Fix this k and consider Games k and $k + 1$.
• $\varepsilon_k(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

\[
pk_d \; \ldots \; pk_{k+1} \; pk_k \; \ldots \; pk_0
\]

\[
\overline{sk_d} \; \ldots \; \overline{sk_{k+1}} \; \overline{sk_k} \; \ldots \; sk_0
\]

insecure against A, but secure if $\overline{sk_{k+1}}$ is replaced by $\overline{sk'_{k+1}}$.

So, A can help us distinguish between $\overline{sk_{k+1}}$ and $\overline{sk'_{k+1}}$.

• Three players, two games:

\[
\begin{array}{ccc}
\text{Game against Σ} & \text{Game against $\Sigma^{(d)}$} \\
C \text{ (challenger)} & B \text{ (challenger)} & A \text{ (adversary)} \\
\text{(adversary)} & \text{(challenger)} & \text{(adversary)}
\end{array}
\]

• Remark: between B and C is a multi-ciphertext game.
• $\varepsilon_k(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

\[
pk_d \ldots \pk_{k+1} \pk \ldots \pk_0
\]
\[
sk_d \ldots \psi \sk_k \ldots \sk_0
\]

\[\downarrow \text{insecure if } \psi = \sk_{k+1}\]

secure if $\psi = \sk'_{k+1}$.

A can help us distinguish between \sk_{k+1} and \sk'_{k+1}.
Game against Σ

<table>
<thead>
<tr>
<th>C (challenger)</th>
<th>B (adversary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. generate pk, sk;</td>
<td>5. send $\pi_0 = sk_{k+1}$, $\pi_1 = sk'_{k+1}$ to C;</td>
</tr>
<tr>
<td>2. send pk to B;</td>
<td>8. (B is to guess b, with A's help);</td>
</tr>
<tr>
<td>6. choose b;</td>
<td>14. if $\beta = \beta'$ then $b' = 0$ else $b' = 1$;</td>
</tr>
<tr>
<td>7. send $\psi \leftarrow E_{pk}(\pi_b)$ to B;</td>
<td>15. send b' to C.</td>
</tr>
</tbody>
</table>

Game against $\Sigma^{(d)}$

<table>
<thead>
<tr>
<th>B (challenger)</th>
<th>A (adversary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. set up the game with A;</td>
<td>11. send plaintexts π'_0, π'_1 to B;</td>
</tr>
<tr>
<td>4. replace pk_k by pk;</td>
<td>13. send its guess β' to B;</td>
</tr>
<tr>
<td>9. replace sk_{k+1} by ψ;</td>
<td>12. choose β and send $\psi' \leftarrow E_{pk_d}(\pi'_\beta)$ to A;</td>
</tr>
<tr>
<td>10. send the "keys" to A;</td>
<td></td>
</tr>
<tr>
<td>12. choose β and send $\psi' \leftarrow E_{pk_d}(\pi'_\beta)$ to A;</td>
<td></td>
</tr>
</tbody>
</table>
• In summary, if A has a non-negligible advantage against $\Sigma^{(d)}$, then B has a non-negligible advantage against the multi-ciphertext version of Σ, from which one can construct an algorithm B' against (the single-ciphertext version of) Σ with a non-negligible advantage. This proves the theorem.

• Theorem. If Σ is semantically secure (and bootstrappable), then $\Sigma^{(d)}$ is semantically secure for each d.
Can we use just one pair of keys?

- The public key of $\Sigma^{(d)}$ (including the evaluation key) contains $d + 1$ Σ-public keys and a chain of d encrypted Σ-secret keys.

- Question: why don't we use just one pair of keys?
Leveled FHE becomes FHE if Σ is KDM-secure

- Theorem. If Σ is KDM-secure, then we can shorten $pk^{(d)}$ to \(\{ pk_0, \overline{sk_0} \} \), with $\overline{sk_0} \leftarrow \text{Encrypt}(pk_0, sk_0)$. Then, all $\Sigma^{(d)}$ are the same and we have an FHE scheme.

\[
\begin{array}{ccccccc}
 pk_d & pk_{d-1} & \cdots & pk_1 & pk_0 \\
 \overline{sk_d} & \overline{sk_{d-1}} & \cdots & \overline{sk_1} & sk_0 \\
\end{array}
\Rightarrow
\begin{array}{ccccccc}
 pk_0 & pk_0 & \cdots & pk_0 & pk_0 \\
 \overline{sk_0} & \overline{sk_0} & \cdots & \overline{sk_0} & sk_0 \\
\end{array}
\]
KDM-Security

(KDM: Key-Dependent Message)
Recall: IND-CPA (semantic security)

• In the IND-CPA game,

\[
\Pr[A \text{ wins}] \triangleq \Pr \left[A^E_k \left(1^\lambda, m_0, m_1, E_k(m_b) \right) = b : \\
\begin{bmatrix}
k \leftarrow G(1^\lambda),
\ b \leftarrow \{0,1\},
\ m_0, m_1 \leftarrow_A M
\end{bmatrix}
\right].
\]

• Define the adversary's advantage to be \(|\Pr[A \text{ wins}] - 1/2|\).

• An encryption scheme is IND-CPA if all polynomial-time adversaries have negligible advantages.

• Remark: The game for asymmetric encryption is similar.
- Semantic security assumes that the messages to be encrypted are independent of the secret key.

- Suppose \(\Sigma = (G, E, D) \) is semantically secure (IND-CPA). Suppose we modify the encryption algorithm such that

\[
E'_k(m) = \begin{cases}
0 || E_k(m) & \text{if } m \neq k \\
1 || k & \text{otherwise}
\end{cases}
\]

- Q: Is \(\Sigma' = (G, E', D) \) semantically secure?

- \(\Sigma' \) is apparently insecure if it is used to encrypt the key itself, and potentially insecure if used to encrypt key-dependent messages.

- This suggests the notion of KDM security.
KDM-security game (for asymmetric encryption)

- Parameters: security parameter λ, an integer $n > 0$, a class C of functions that map n secret keys to a message.

- Setup. The challenger chooses a random bit $b \leftarrow \{0, 1\}$, generates n key pairs $(pk_1, sk_1), \ldots, (pk_n, sk_n)$, and sends public keys (pk_1, \ldots, pk_n) to the adversary.

- Queries. The adversary issues queries of the form (i, f) with $1 \leq i \leq n$ and $f \in C$. The challenger responds with

 $$
 c \leftarrow \begin{cases}
 E(pk_i, m) & \text{if } b = 0 \\
 E(pk_i, 0^{\lvert m \rvert}) & \text{if } b = 1
 \end{cases}
 $$

 where $m = f(sk_1, \ldots, sk_n)$.

- Finish. The adversary guesses whether $b = 0$ or $b = 1$.

KDM-security

- A public-key encryption scheme is \(n \)-way KDM-secure with respect to \(C \) if all polynomial-time adversaries have negligible advantages in the KDM-security game.

- Boneh et al (Crypto'08) proposed a KDM-secure encryption scheme w.r.t. the following class of functions:
 - all constant functions: \(f_m(x_1, ..., x_n) = m \) for \(m \in M \).
 - all selector functions \(f_i(x_1, ..., x_n) = x_i \) for \(1 \leq i \leq n \).

- KDM-security for this class of functions implies semantic security as well as circular security. (In circular security, we have a cycle of \(n \) key pairs, and we are allowed to encrypt each \(sk_i, 1 \leq i \leq n \), under \(pk_{(i \mod n + 1)} \).)
The KDM-security needed for FHE

- The KDM-security needed to convert leveled FHE to FHE is circular security for some $n > 0$.
- Since the underlying SHE is bootstrappable, using multiple key-pairs ($n > 1$) does not seem to be more secure than using just one pair ($n = 1$). Why?