1. Let (Gen, H) be a collision-resistant hash function. Is (Gen, \tilde{H}) defined by $\tilde{H}'(x) = H'(H'(x))$ necessarily a collision-resistant hash function? Justify your answer.

2. Before HMAC, it was common to define a MAC for arbitrary-length message by $Mac_{s,k}(m) = H'(k || m)$ where H is a collision-resistant hash function. Show that this is not a secure MAC if H is constructed via the Merkle-Damgard transform. (Assume the hash key s is known to the attacker, and only k is kept secret. The underlying compression function h is also known to the attacker.)

3. In an RSA encryption scheme, the public key of a user is $e = 31, N = 3599$. What is the private key of this user?

4. In a public-key system using RSA, you intercept a ciphertext $c = 60$ sent to a user whose public key is $N = 155$ and $e = 7$. What is the plaintext m?

5. Fix the RSA modulus N, and assume there is an adversary A running in time t for which

 $\Pr\left[A\left(x^e \mod N\right) = x : x \leftarrow \mathbb{Z}_N^* \right] = 0.01.$

 That is, A can decrypt the ciphertext of a random message x with probability 0.01. Construct an adversary A' for which

 $\Pr\left[A'\left(x^e \mod N\right) = x : x \leftarrow \mathbb{Z}_N^* \right] \geq 0.99.$

 That is, A' can decrypt the ciphertext of a random message x with probability ≥ 0.99. The running time t' of A' must satisfy $t' \leq \text{poly}(t, \log N)$.

 Hint: use the homomorphism property of RSA.