CSE 5351 Homework 5

Due: Tuesday, March 6 by class time

1. In basic CBC-MAC, t_0 is fixed. Show that the following modification (where t_0 is not fixed) does not yield a secure fixed-length MAC for messages of length nq.

 (Modified) Tag generation: For key $k \in \{0,1\}^n$ and message $m \in \{0,1\}^{nq}$,
 - parse m as $m = (m_1, \ldots, m_q)$ \ // q blocks //
 - apply CBC to m, i.e., let
 \[t_0 \leftarrow \{0,1\}^n \quad \text{and} \quad t_i := F_k (m_i \oplus t_{i-1}) \text{ for } 1 \leq i \leq q \]
 - output $\langle t_0, t_q \rangle$ as the tag

2. Show that appending the message length $|m|$ (number of blocks) to the end of m before applying basic-CBC-MAC does not result in a secure MAC for arbitrary-length messages. **Hint:** The adversary obtains three samples as follows:
 - Present a 1-block message m_1 to the oracle and obtain tag t_1, where
 \[t_1 = \text{basic-CBC-MAC}_k \left(m_1, |m_1| \right). \] \hspace{0.5cm} (k is a secret key not known to the adversary.)
 - Present another 1-block message m_2 to the oracle and obtain tag t_2, where
 \[t_2 = \text{basic-CBC-MAC}_k \left(m_2, |m_2| \right). \]
 - Present a 3-block message $m_3 = (m_1, |m_1|, m_2)$ to the oracle and obtain tag t_3, where
 \[t_3 = \text{basic-CBC-MAC}_k \left(m_1, |m_1|, m_2, |m_3| \right). \]
 - From the above three samples, construct a valid pair (m, t).

3. Let F be a pseudorandom function. Construct a fixed-length MAC scheme for messages of length $2n$ as follows. The shared key is a random $k \in \{0,1\}^n$. To authenticate a message m_1m_2 with $|m_1| = |m_2| = n$, let the tag be $\langle F_k (m_1), F_k (F_k (m_2)) \rangle$. Is this scheme secure against chosen-message attacks? Justify your answer.