Practical Constructions of Block Ciphers

Reading: K&L Section 6.2 (skipping 6.2.6)
Practical constructions of block ciphers

- There are methods to construct pseudorandom permutations from one-way functions.
 - One-way functions \Rightarrow pseudorandom generators
 \Rightarrow pseudorandom functions
 \Rightarrow pseudorandom permutations
 - Extremely slow

- In practice, block ciphers are constructed using
 - Feistel networks (e.g., DES)
 - Substitution-permutation networks (e.g., AES)

- Block ciphers: "approximate" pseudorandom permutations with some fixed key length and block length.
The confusion-diffusion paradigm

- Introduced by Shannon. Suppose we want to design a 128-bit (keyed) random-looking permutation F.
- First, design an 8-bit (keyed) random-looking permutation f.
- To compute $F_k(x)$:
 - Divide the input block x into sixteen 8-bit blocks x_1, \ldots, x_{16}.
 - Use the key k to specify 16 permutations $f_{k_1}, \ldots, f_{k_{16}}$.
 (Derive a round key $\langle k_1, \ldots, k_{16} \rangle$ from the master key k.)
 - Let $x' = f_{k_1}(x_1) \parallel \cdots \parallel f_{k_{16}}(x_{16})$ (confusion).
 - Permute the 128 bits of x' (diffusion).
 - Repeat the process several times (rounds).
Substitution-permutation networks

- A direct implementation of the confusion-diffusion paradigm.
- Hard to design a (keyed) random-looking permutation f.
- Design 16 (unkeyed, fixed) 8-bit permutations f_1, \ldots, f_{16}, which are called S-boxes and denoted by S_1, \ldots, S_{16}.
- To compute $F_k(x)$:
 - Divide the input block x into 8-bit blocks x_1, \ldots, x_{16}.
 - Derive a round key $\langle k_1, \ldots, k_{16} \rangle$ from the master key k.
 - Let $x' = S_1(x_1 \oplus k_1) \| \cdots \| S_{16}(x_{16} \oplus k_{16})$ (key-mixing & substitution).
 - Permute the 128 bits of x' (permutation).
 - Repeat the process several times (rounds), followed by a final key-mixing.
Substitution-permutation network

Key-mixing

Substitution

Permutation
In practice, all rounds use the same set of boxes, say \{S_1, S_2, S_3, S_4\}.
Feistel Networks and Data Encryption Standard (DES)
Feistel Network/Cipher

- Proposed by Feistel (in 1970s). Suppose we want to design an ℓ-bit (keyed) random-looking permutation F.
- First, design an $\ell/2$-bit (keyed) random-looking function f, which is not necessarily invertible.
- To compute $F_k(x)$:
 - Divide the input block x into two halves L and R.
 - Derive a round key k_i (for round i) from master key k.
 - Let $x' = R \parallel L \oplus f_{k_i}(R)$.
 - Repeat the process several times (rounds).
 - (Typically there is a final swap of L and R.)
Round i

If $\oplus k_i$ is not invertible

$\begin{align*}
L' & \quad R' \\
\downarrow & \quad \downarrow \\
L & \quad R
\end{align*}$
The Feistel Network Structure

Note: Read F as f.
Feistel Network/Cipher (Mathematical Description)

- Let L_i and R_i denote the output half-blocks of the ith round.
- So L_{i-1} and R_{i-1} are the input of the ith round.
- We have

 $$L_i := R_{i-1}$$
 $$R_i := L_{i-1} \oplus f_{k_i}(R_{i-1})$$

- The ith round can be viewed as a composite function $\mu \circ \phi_i$

 $$\phi_i : (x, y) \rightarrow (x \oplus f_{k_i}(y), y), \text{ where } x, y \text{ are half-blocks.}$$
 $$\mu : (x, y) \rightarrow (y, x).$$

- Note that $\phi_i^{-1} = \phi_i$ and $\mu^{-1} = \mu.$
• Assume 16 rounds.

• A Feistel cipher with key k and input block x will output:

$$y = F_k(x) = \mu \circ \mu \circ \phi_{16} \circ \cdots \circ \mu \circ \phi_2 \circ \mu \circ \phi_1(x)$$

• The inverse $F_k^{-1}(y)$ will be:

$$F_k^{-1}(y) = \phi_1^{-1} \circ \mu^{-1} \circ \phi_2^{-1} \circ \cdots \circ \mu^{-1} \circ \phi_{16}^{-1} \circ \mu^{-1} \circ \mu^{-1}(y)$$

$$= \mu \circ \mu \circ \phi_1 \circ \mu \circ \phi_2 \circ \cdots \circ \mu \circ \phi_{16}(y)$$

• F_k^{-1} is the same as F_k, but uses the round keys in the reverse order.
DES: The Data Encryption Standard

- Once most widely used block cipher in the world.
- Adopted by NIST in 1977.
- Based on the Feistel cipher structure with 16 rounds of processing.
- Block = 64 bits
- Key = 56 bits
- What is specific to DES is the design of the f function and how the round keys are derived from the main key.
Design Principles of DES

- To achieve high degree of **confusion** and **diffusion**.

- Confusion: making the relationship between the encryption key and the ciphertext as complex as possible.

- Diffusion: making each plaintext bit affect as many ciphertext bits as possible.
DES Encryption Overview

1. **Initial Permutation**
 - 64-bit plaintext

2. **Round 1**
 - K_1: 48 bits
 - Permutated Choice 2
 - Left circular shift

3. **Round 2**
 - K_2: 48 bits
 - Permutated Choice 2
 - Left circular shift

4. **Round 16**
 - K_{16}: 48 bits
 - Permutated Choice 2
 - Left circular shift

5. **32-bit Swap**
 - 64 bits

6. **Inverse Initial Permutation**
 - 64-bit ciphertext
Round Key Generation

- Main key: 64 bits, but only 56 bits are used.
- 16 round keys (48 bits each) are generated from the main key by a sequence of permutations.
- Select and permute 56-bits using Permuted Choice One (PC1). Then divide them into two 28-bit halves.
- At each round:
 - Rotate each half separately by either 1 or 2 bits according to a rotation schedule.
 - Select 24-bits from each half & permute them (48 bits) by PC2.
 - This forms a round key.
Permutated Choice One (PC1)

<table>
<thead>
<tr>
<th>57</th>
<th>49</th>
<th>41</th>
<th>33</th>
<th>25</th>
<th>17</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>50</td>
<td>42</td>
<td>34</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>59</td>
<td>51</td>
<td>43</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>3</td>
<td>60</td>
<td>52</td>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td>63</td>
<td>55</td>
<td>47</td>
<td>39</td>
<td>31</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
<td>54</td>
<td>46</td>
<td>38</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>61</td>
<td>53</td>
<td>45</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>5</td>
<td>28</td>
<td>20</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>
DES Round Structure

- L & R each has 32 bits.
- As in any Feistel cipher:

 $L_i := R_{i-1}$

 $R_i := L_{i-1} \oplus f_{k_i}(R_{i-1})$

- f takes 32-bit R and 48-bit round key k_i:
 - expands R to 48-bits using expansion perm E
 - adds to the round key using XOR
 - shrinks to 32-bits using 8 S-boxes
 - finally permutes using 32-bit perm P
The DES f function

The diagram shows the process of the DES f function, which involves the following steps:

1. The input R (32 bits) is first expanded to 48 bits using the expansion function E.
2. The 48-bit expanded value is then XORed with the 48-bit key K.
3. The result of the XOR operation is then passed through a series of substitution boxes labeled S_1 to S_8.
4. Finally, the output is permuted by the permutation function P to produce the 32-bit output.
The E Expansion Permutation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>1</td>
</tr>
</tbody>
</table>
The S-Boxes

- Eight S-boxes each map 6 to 4 bits
- Each S-box is a 4 x 16 table
 - each row is a permutation of 0-15
 - outer bits 1 & 6 of input are used to select one of the four rows/permutations
 - inner 4 bits of input are used to select a column
- All the eight boxes are different.
Box S_1

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>8</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

- For example, $S_1(101010) = 6 = 0110$.
P-Permutation
Avalanche Effect

- **Avalanche effect**: a key desirable property of any encryption algorithm:
 - A small change in the plaintext or in the key results in a significant change in the ciphertext.
 - (an evidence of high degree of diffusion and confusion)

- DES exhibits a strong avalanche effect
 - Changing 1 bit in the plaintext affects 34 bits in the ciphertext on average.
 - 1-bit change in the key affects 35 bits in the ciphertext on average.
Attacks on DES

- Brute-force key search
 - Needs only two plaintext-ciphertext samples
 - Trying 1 key per microsecond would take 1000+ years on average, due to the large key space size, \(2^{56} \approx 7.2 \times 10^{16}\).

- Differential cryptanalysis
 - Possible to find a key with \(2^{47}\) plaintext-ciphertext samples
 - Known-plaintext attack

- Linear cryptanalysis:
 - Possible to find a key with \(2^{43}\) plaintext-ciphertext samples
 - Known-plaintext attack
Attacks on DES

• **DES Cracker:**
 – A DES key search machine
 – containing 1536 chips
 – could search 88 billion keys per second
 – won RSA Laboratory’s **DES Challenge II-2** by successfully finding a DES key in 56 hours.
 – Cost: $250,000

• The vulnerability of DES is due to **its short key length**.

• Remedy: 3DES
Multiple Encryption with DES

• In 2001, NIST published the Advanced Encryption Standard (AES) to replace DES.

• But users in commerce and finance are not ready to give up on DES.

• As a temporary solution to DES’s security problem, one may encrypt a message (with DES) multiple times using multiple keys:
 – 2DES is not much securer than the regular DES
 – So, 3DES with either 2 or 3 keys is used
2DES

- Use two DES keys, say k_1, k_2.

- Encryption: $c := Enc_{k_2}(Enc_{k_1}(m))$

- Key length: $56 \times 2 = 112$ bits

- Would this thwart brute-force attacks?
Meet-in-the-Middle Attack on 2DES

\[m \rightarrow \text{Enc}_{k_1} \rightarrow \text{Enc}_{k_2} \rightarrow c \]

- Given a known pair \((m, c)\), attack as follows:
 - Encrypt \(m\) with all \(2^{56}\) possible keys for \(k_1\).
 - Decrypt \(c\) with all \(2^{56}\) possible keys for \(k_2\).
 - Find two keys \(\tilde{k}_1, \tilde{k}_2\) such that \(\text{Enc}_{\tilde{k}_1}(m) = \text{Dec}_{\tilde{k}_2}(c)\).
 - Try \(\tilde{k}_1, \tilde{k}_2\) on another pair \((m', c')\): Is \(\text{Enc}_{\tilde{k}_1}(m') = \text{Dec}_{\tilde{k}_2}(c')\)?
 - If works, \((\tilde{k}_1, \tilde{k}_2) = (k_1, k_2)\) with high probability.
 - Takes \(\Theta \left(2^{56}\right)\) steps, not much more than attacking 1-DES.

- It is a known-plaintext attack.
3DES with 2 keys

- A straightforward implementation would be:
 \[c := Enc_{k_1} \left(Enc_{k_2} \left(Enc_{k_1}(m) \right) \right) \]

- In practice: \[c := Enc_{k_1} \left(Dec_{k_2} \left(Enc_{k_1}(m) \right) \right) \]
 - Also referred to as EDE encryption
 - Reason: if \(k_1 = k_2 \), then 3DES = 1DES.
 Thus, a 3DES software can be used as a single-DES.
 - No practical attacks are known.
 - Not recommended: key size 112 bits is shorter than the current minimum recommendation of 128 bits.
3DES with 3 keys

- Encryption: \(c := \text{Enc}_{k_3}\left(\text{Dec}_{k_2}\left(\text{Enc}_{k_1}(m)\right)\right) \).
- If \(k_1 = k_3 \), it becomes 3DES with 2 keys.
- If \(k_1 = k_2 = k_3 \), it becomes the regular DES.
- So, it is backward compatible with both 3DES with 2 keys and the regular DES.
- Some internet applications adopt 3DES with three keys, e.g. PGP and S/MIME.
AES: Advanced Encryption Standard

Finite field: The mathematics used in AES.
AES: Advanced Encryption Standard

• In 1997, NIST began the process of choosing a replacement for DES and called it the Advanced Encryption Standard.
• Requirements: block length of 128 bits, key lengths of 128, 192, and 256 bits.
• In 2000, Rijndael cipher (by Rijmen and Daemen) was selected.
• An iterated cipher, with 10, 12, or 14 rounds.
• Rijndael allows various block lengths.
• AES allows only one block size: 128 bits.
Structure of Rijndael

- N_b: block size (number of words). For AES, $N_b = 4$.
- N_k: key length (number of words).
- N_r: number of rounds, depending on N_b, N_k.
- Assume: $N_b = 4$, $N_k = 4$, $N_r = 10$.
- *state*: a variable of 4 words, holding the data block, viewed as a 4×4 matrix of bytes; each column is a word.
- Key schedule: $N_r + 1$ round keys $key_0, key_1, \ldots, key_{10}$ are computed from the main key k.
Rijndael algorithm (input: plaintext m, key k)

1. $state \leftarrow m$
2. $\text{AddKey}(state, key_0)$
3. for $i \leftarrow 1$ to $N_r - 1$ do
 4. $\text{SubBytes}(state)$
 5. $\text{ShiftRows}(state)$
 6. $\text{MixColumns}(state)$
 7. $\text{AddKey}(state, key_i)$
8. $\text{SubBytes}(state)$
9. $\text{ShiftRows}(state)$
10. $\text{AddKey}(state, key_{N_r})$
11. return($state$)
AddKey($state, \ key_i$)

\[state \leftarrow state \oplus key_i \]
SubBytes($state$)

- Each byte z in $state$ is substituted with another byte according to a table.
ShiftRows\((state) \)

- Left-shift row \(i \) circularly by \(i \) bytes, \(0 \leq i \leq 3 \).

\[
\begin{pmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p \\
\end{pmatrix} \rightarrow \begin{pmatrix}
a & b & c & d \\
f & g & h & e \\
k & l & i & j \\
p & m & n & o \\
\end{pmatrix}
\]
MixColumns(state)

- Operates on each column of the *state* matrix.
- View each column \(a = (a_0, a_1, a_2, a_3) \) as a polynomial with coefficients in \(\text{GF}(2^8) \):
 \[
a(x) = a_3x^3 + a_2x^2 + a_1x + a_0
 \]
- A fixed polynomial: \(c(x) = 03x^3 + 01x^2 + 01x + 02 \).
- The MixColumns operation maps each column
 \[
a(x) \mapsto a(x) \cdot c(x) \mod (x^4 + 1)
 \]
Rijndael Decryption

- Each step of Rijndael encryption is invertible.
Rijndael key schedule

- Round keys are derived from the main key
A Rijndael Animation by Enrique Zabala