Classical Encryption Techniques

• As opposed to modern cryptography
• Symmetric-key
Symmetric Cipher Model

Plaintext input → Encryption algorithm (e.g., DES) → Transmitted ciphertext → Decryption algorithm (reverse of encryption algorithm) → Plaintext output

Secret key shared by sender and recipient
Brute-Force Attack

- Try every key to decipher the ciphertext.
- On average, need to try half of all possible keys
- Time needed proportional to size of key space

<table>
<thead>
<tr>
<th>Key Size (bits)</th>
<th>Number of Alternative Keys</th>
<th>Time required at 1 decryption/µs</th>
<th>Time required at 10^6 decryptions/µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(2^{32} = 4.3 \times 10^9)</td>
<td>(2^{31} , \mu s) = 35.8 minutes</td>
<td>2.15 milliseconds</td>
</tr>
<tr>
<td>56</td>
<td>(2^{56} = 7.2 \times 10^{16})</td>
<td>(2^{55} , \mu s) = 1142 years</td>
<td>10.01 hours</td>
</tr>
<tr>
<td>128</td>
<td>(2^{128} = 3.4 \times 10^{38})</td>
<td>(2^{127} , \mu s) = (5.4 \times 10^{24}) years</td>
<td>(5.4 \times 10^{18}) years</td>
</tr>
<tr>
<td>168</td>
<td>(2^{168} = 3.7 \times 10^{50})</td>
<td>(2^{167} , \mu s) = (5.9 \times 10^{36}) years</td>
<td>(5.9 \times 10^{30}) years</td>
</tr>
<tr>
<td>26 characters (permutation)</td>
<td>(26! = 4 \times 10^{26})</td>
<td>(2 \times 10^{26} , \mu s) = (6.4 \times 10^{12}) years</td>
<td>(6.4 \times 10^6) years</td>
</tr>
</tbody>
</table>
Classical Ciphers

- Plaintext is viewed as a sequence of elements (e.g., bits or characters)
- **Substitution cipher:** replacing each element of the plaintext with another element.
- **Permutation cipher:** rearranging the order of the elements of the plaintext.
- **Product cipher:** using multiple stages of substitutions and permutations
Caesar Cipher

- Earliest known substitution cipher
- Invented by Julius Caesar
- Each letter is replaced by the letter three positions further down the alphabet.
- Plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
 Cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
- Example: ohio state → RKLR VWDWH
Caesar Cipher

- Mathematically, map letters to numbers:

 a, b, c, \ldots, x, y, z

 $0, 1, 2, \ldots, 23, 24, 25$

- Then the general Caesar cipher is:

 $c = E_k(p) = (p + k) \mod 26$

 $p = D_k(c) = (c - k) \mod 26$

- Can be generalized with any alphabet.
Cryptanalysis of Caesar Cipher

• Key space: \{0, 1, ..., 25\}
• Vulnerable to brute-force attacks.
• E.g., break ciphertext "UNOU YZGZK"

• Need to recognize it when have the plaintext
• What if the plaintext is written in Swahili?
Monoalphabetic Substitution Cipher

• Shuffle the letters and map each plaintext letter to a different random ciphertext letter:

 Plain letters: abcdefghijklmnopqrstuvwxyz
 Cipher letters: DKVQFIBJWPESCXHTMYAUOLRGZN

 Plaintext: ifwewishtoreplaceletters
 Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

• What does a key look like?
Monoalphabetic Cipher Security

• Now we have a total of $26! = 4 \times 10^{26}$ keys.
• With so many keys, it is secure against brute-force attacks.
• But not secure against some cryptanalytic attacks.
• Problem is language characteristics.
Language Statistics and Cryptanalysis

• Human languages are not random.
• Letters are not equally frequently used.
• In English, E is by far the most common letter, followed by T, R, N, I, O, A, S.
• Other letters like Z, J, K, Q, X are fairly rare.
• There are tables of single, double & triple letter frequencies for various languages.
English Letter Frequencies
Statistics for double & triple letters

• In decreasing order of frequency

• Double letters:
 th he an in er re es on, ...

• Triple letters:
 the and ent ion tio for nde, ...
Use in Cryptanalysis

• Key concept: monoalphabetic substitution does not change relative letter frequencies

• To attack, we
 – calculate letter frequencies for ciphertext
 – compare this distribution against the known one
Example Cryptanalysis

• Given ciphertext:
 UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
 VUEPHZHMDZSHZOWSFAPPDTSVPQUZWYMUXUZUHSX
 EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
• Count relative letter frequencies (see next page)
• Guess \{P, Z\} = \{e, t\}
• Of double letters, ZW has highest frequency, so guess ZW = th and hence ZWP = the
• Proceeding with trial and error finally get:
 it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow
Letter frequencies in ciphertext

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>13.33</td>
</tr>
<tr>
<td>H</td>
<td>5.83</td>
</tr>
<tr>
<td>F</td>
<td>3.33</td>
</tr>
<tr>
<td>B</td>
<td>1.67</td>
</tr>
<tr>
<td>C</td>
<td>0.00</td>
</tr>
<tr>
<td>Z</td>
<td>11.67</td>
</tr>
<tr>
<td>D</td>
<td>5.00</td>
</tr>
<tr>
<td>W</td>
<td>3.33</td>
</tr>
<tr>
<td>G</td>
<td>1.67</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
</tr>
<tr>
<td>S</td>
<td>8.33</td>
</tr>
<tr>
<td>E</td>
<td>5.00</td>
</tr>
<tr>
<td>Q</td>
<td>2.50</td>
</tr>
<tr>
<td>Y</td>
<td>1.67</td>
</tr>
<tr>
<td>L</td>
<td>0.00</td>
</tr>
<tr>
<td>U</td>
<td>8.33</td>
</tr>
<tr>
<td>V</td>
<td>4.17</td>
</tr>
<tr>
<td>T</td>
<td>2.50</td>
</tr>
<tr>
<td>I</td>
<td>0.83</td>
</tr>
<tr>
<td>N</td>
<td>0.00</td>
</tr>
<tr>
<td>O</td>
<td>7.50</td>
</tr>
<tr>
<td>X</td>
<td>4.17</td>
</tr>
<tr>
<td>A</td>
<td>1.67</td>
</tr>
<tr>
<td>J</td>
<td>0.83</td>
</tr>
<tr>
<td>R</td>
<td>0.00</td>
</tr>
<tr>
<td>M</td>
<td>6.67</td>
</tr>
</tbody>
</table>
What kind of attack?

- Ciphertext-only attack
- Known-plaintext attack
- Chosen-plaintext attack
- Chosen-ciphertext attack
Playfair Cipher

• Not even the large number of keys in a monoalphabetic cipher provides security.
• One approach to improving security is to encrypt multiple letters at a time.
• The **Playfair Cipher** is the best known such cipher.
• Invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair.
Playfair Key Matrix

- Use a 5 x 5 matrix.
- Fill in letters of the key (w/o duplicates).
- Fill the rest of matrix with other letters.
- E.g., key = MONARCHY.

<table>
<thead>
<tr>
<th>M</th>
<th>O</th>
<th>N</th>
<th>A</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>H</td>
<td>Y</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>G</td>
<td>I/J</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>P</td>
<td>Q</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Z</td>
</tr>
</tbody>
</table>
Encrypting and Decrypting

Plaintext is encrypted two letters at a time.

1. If a pair is a repeated letter, insert filler like 'X'.
2. If both letters fall in the same row, replace each with the letter to its right (circularly).
3. If both letters fall in the same column, replace each with the letter below it (circularly).
4. Otherwise, each letter is replaced by the letter in the same row but in the column of the other letter of the pair.
Security of Playfair Cipher

- Equivalent to a monoalphabetic cipher with an alphabet of 26 x 26 = 676 characters.
- Security is much improved over the simple monoalphabetic cipher.
- Was widely used for many decades – eg. by US & British military in WW1 and early WW2
- Once thought to be unbreakable.
- Actually, it **can** be broken, because it still leaves some structure of plaintext intact.
Polyalphabetic Substitution Ciphers

• A sequence of monoalphabetic ciphers \((M_1, M_2, M_3, ..., M_k)\) is used in turn to encrypt letters.
• A key determines which sequence of ciphers to use.
• Each plaintext letter has multiple corresponding ciphertext letters.
• This makes cryptanalysis harder since the letter frequency distribution will be flatter.
Vigenère Cipher

• Simplest polyalphabetic substitution cipher
• Consider the set of all Caesar ciphers: \{ C_a, C_b, C_c, ..., C_z \}
• Key: e.g. security
• Encrypt each letter using \(C_s, C_e, C_c, C_u, C_r, C_i, C_t, C_y \) in turn.
• Repeat from start after \(C_y \).
• Decryption simply works in reverse.
Security of Vigenère Ciphers

• There are multiple (how many?) ciphertext letters corresponding to each plaintext letter.
• So, letter frequencies are obscured but not totally lost.
• To break Vigenere cipher:
 1. Try to guess the key length. How?
 2. If key length is N, the cipher consists of N Caesar ciphers. Plaintext letters at positions k, N+k, 2N+k, 3N+k, etc., are encoded by the same cipher.
 3. Attack each individual cipher as before.
Example of Vigenère Cipher

- **Keyword:** deceptive
 - **key:** deceptive deceptive deceptive
d - **plaintext:** wearediscoveredsa veyourself
 - **ciphertext:** ZICVTWQNGRZGVTWAVZHCQYGLMGJ
Guessing the Key Length

• Main idea: Plaintext words separated by multiples of the key length are encoded in the same way.
• In our example, if plaintext = “…thexxxxxxtthe…” then “the” will be encrypted to the same ciphertext words.
• So look at the ciphertext for repeated patterns.
• E.g. repeated “VTW” in the previous example suggests a key length of 3 or 9:

 ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

• Of course, the repetition could be a random fluke.
Rotor Cipher Machines

- Before modern ciphers, rotor machines were most common complex ciphers in use.
- Widely used in WW2.
- Used a series of rotating cylinders.
- Implemented a polyalphabetic substitution cipher of period K.
 - With 3 cylinders, $K = 26^3 = 17,576$.
 - With 5 cylinders, $K = 26^5 = 12 \times 10^6$.
Figure 2.7 Three-Rotor Machine With Wiring Represented by Numbered Contacts
German secret setting sheets

Geheim! Secret indeed! This is an example of the setting sheet.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Walevenlage</th>
<th>Ringstellung</th>
<th>Steckerverbindungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>I V III</td>
<td>06 20 24</td>
<td>UA PF RQ SO NL BY BG HL TX ZJ</td>
</tr>
<tr>
<td>30</td>
<td>V II III</td>
<td>01 07 12</td>
<td>GF KV JM EB UW LX TD QS NA 2H</td>
</tr>
<tr>
<td>29</td>
<td>IV I V</td>
<td>11 17 26</td>
<td>CI GK PV ZL HX NB AW DJ FE ST</td>
</tr>
</tbody>
</table>

Date
Which rotors to use (there were 10 rotors)
Ring setting
Plugboard setting
The Rotors
Enigma Rotor Machine
Enigma Rotor Machine
Transposition Ciphers

• Also called permutation ciphers.
• Shuffle the plaintext, without altering the actual letters used.
• Example: Row Transposition Ciphers
Row Transposition Ciphers

• Plaintext is written row by row in a rectangle.
• Ciphertext: write out the columns in an order specified by a key.

Key: 3 4 2 1 5 6 7

Plaintext:

Ciphertext: TTNAAPTMSTOAOADWOICOIXKNLYPETZ
Product Ciphers

• Uses a sequence of substitutions and transpositions
 – Harder to break than just substitutions or transpositions
• This is a bridge from classical to modern ciphers.