1. Give the EDGES of the minimum spanning tree of the weighted graph in Figure 1 in the order they would be output by Prim’s algorithm starting at vertex v_1.

![Figure 1](image1.png)

2. Give the EDGES of the shortest path tree of the weighted graph in Figure 2 in the order they would be output by Dijkstra’s shortest path algorithm starting at vertex v_1.

![Figure 2](image2.png)

3. Consider the following graph G with solid and dotted edges:

![Graph](image3.png)

The solid edges form a spanning tree T of graph G. Each of the solid edges has a weight. Assign weights to the dotted edges, $(1,2)$, $(2,3)$, $(4,5)$, $(3,6)$ and $(4,7)$, such that:

- Each of the edge weights is a positive INTEGER;
- Tree T is a MINIMUM spanning tree of G and NO other tree is a MINIMUM spanning tree of G;
- Each of the edge weights of the dotted edges is as small as possible.

For instance, if you assign the edge weight 1 to edge $(2,3)$, then replacing edge $(3,5)$ in T with edge $(2,3)$ will give a spanning tree with less weight than T. Thus edge $(2,3)$ must have a weight greater than 1. If you assign the edge weight 2 to edge $(2,3)$, then replacing edge $(3,5)$ in T with edge $(2,3)$ will give a
different spanning tree with weight equal to \(T \). This new tree would also be a minimum spanning tree. Thus edge \((2,3)\) must have a weight greater than 2.

4. Consider the following graph \(G \) with solid and dotted edges:

![Graph Image]

The solid edges form a spanning tree \(T \) of graph \(G \). Each of the solid edges has a weight. Assign weights to the dotted edges, \((2,5)\), \((3,6)\), \((6,8)\), \((7,8)\) and \((6,9)\), such that:

- Each of the edge weights is a positive INTEGER;
- Tree \(T \) is a SHORTEST PATH tree of \(G \) and NO other tree is a SHORTEST PATH tree of \(G \);
- Each of the edge weights of the dotted edges is as small as possible.

For instance, the distance from \(v_1 \) to \(v_5 \) in \(T \) is 6. If you assign the edge weight 3 to edge \((2,5)\), then replacing edge \((1,4)\) in \(T \) with edge \((2,5)\) will give a spanning tree whose distance from \(v_1 \) to \(v_5 \) is 5. Thus edge \((2,5)\) must have a weight greater than 3. If you assign the edge weight 4 to edge \((2,5)\), then replacing edge \((1,4)\) in \(T \) with edge \((2,5)\) will give a spanning tree whose distance from \(v_1 \) to \(v_5 \) is 6. This new tree would also be a shortest path tree of \(G \). Thus edge \((2,5)\) must have weight greater than 4.

5. Let \(T \) be a minimum spanning tree of an edge weighted graph \(G \). Let \(e \) be an edge of \(G \) whose weight is larger than the weight of any other edge of \(G \) and such that \(G - \{e\} \) is connected. (\(G - \{e\} \) is the graph \(G \) with edge \(e \) deleted.) Prove that \(e \) is not an edge of \(T \).