1. Consider the following undirected graph:

(a) Give the adjacency MATRIX representation of the graph in Figure 1;
(b) Give the adjacency LIST representation of the graph in Figure 1.

2. Consider the following directed graph:

(a) Draw the depth first search trees produced when depth first search is applied to the vertices of the graph in Figure 1 in the order 1,2,3,4,5,6,7,8,9,10,11,12.
(b) Give the start and finishing times when depth first search is applied to the vertices of the graph in Figure 1 in the order 1,2,3,4,5,6,7,8,9,10,11,12.
(c) List all the forward (non-tree) edges, all the back edges and all the cross edges when depth first search is applied to the vertices of the graph in Figure 1 in the order 1,2,3,4,5,6,7,8,9,10,11,12.
(d) Draw the depth first search trees produced when depth first search is applied to the vertices of the graph in Figure 1 in the order 12,11,10,9,8,7,6,5,4,3,2,1.
(e) Give the start and finishing times when depth first search is applied to the vertices of the graph in Figure 1 in the order 12,11,10,9,8,7,6,5,4,3,2,1.
(f) List all the forward (non-tree) edges, all the back edges and all the cross edges when depth first search is applied to the vertices of the graph in Figure 1 in the order 12,11,10,9,8,7,6,5,4,3,2,1.
3. Can the vertices of the graph in Figure 3 be topologically sorted?
 - If your answer is yes, give the graph vertices in a topologically sorted order.
 - If your answer is no, explain why not.

![Figure 3](image)

4. Can the vertices of the graph in Figure 4 be topologically sorted?
 - If your answer is yes, give the graph vertices in a topologically sorted order.
 - If your answer is no, explain why not.

![Figure 4](image)

5. The total weight of a vertex \(v_i \in G \) is the sum of the edge weights of edges incident on \(v_i \). The following algorithm computes the total weight of the vertices of a graph. Assume the graph is represented as an adjacency list. Analyze the running time of this algorithm in terms of the number of vertices \(n \) and the number of edges \(m \). (Justify your answer. Do not simply give a running time.)

   ```
   procedure ComputeTotalWeight(G)
   1   foreach \( v_i \in V(G) \) do
   2       TotalWeight[\( v_i \)] \leftarrow 0;
   3   end
   4   foreach \( v_i \in V(G) \) do
   5       foreach edge \((v_i, v_j)\) incident on \( v_i \) do
   6           TotalWeight[\( v_i \)] \leftarrow TotalWeight[\( v_i \)] + \text{weight}(v_i, v_j);
   7       end
   8   end
   ```

6. Consider the following procedure whose input is a graph \(G \). Edges of \(G \) are represented by the adjacency MATRIX \(G.ADJ[i,j] \).
 (a) What is the maximum number of elements in queue \(Q \)? Give an exact number and justify your answer. (Give your answer in terms of the number of vertices \(n \) and the number of edges \(m \) in \(G \).)
 (b) Analyze the the asymptotic running time of Function \text{Func1} \text{ in terms of the number of vertices n and the number of edges m in G. (Justify your answer. Do not simply give a running time.)}
procedure Func1(G) /* Q is a priority queue implemented as a heap */
1 Q.Init();
2 foreach vertex v_i ∈ V(G) do
3 foreach vertex v_j ∈ V(G) do
4 if (G.Adj[i, j] == 1) then
5 x ← i * n + j;
6 Q.Insert(x);
7 end
8 end
9 end
10 while (Q.IsNotEmpty()) do
11 x ← Q.DeleteMin();
12 Print x;
13 end