1. In the Covex-Hull algorithm, we assumed that no two points have the same x or y coordinate. Now, suppose there are points that may have the same x or y-coordinate. Will the algorithm still work? If not, how to make it work?

2. Write a divide-and-conquer algorithm Power(a, n) that computes the number a^n. What is the time complexity of your algorithm? Your algorithm must work in $o(n)$, little o of n, time.

3. Show the array that would result if we apply the Lumoto partition (just once) to the following array: $(5, 4, 3, 2, 1, 6, 7, 3, 4)$.

(CSE2331 Homework 4
Due: Friday, September 28 by class time

(A heads-up: HW5 will be due on Wednesday, October 3)

Midterm: Monday, October 8.

1. In the Covex-Hull algorithm, we assumed that no two points have the same x or y coordinate. Now, suppose there are points that may have the same x or y-coordinate. Will the algorithm still work? If not, how to make it work?

2. Write a divide-and-conquer algorithm Power(a, n) that computes the number a^n. What is the time complexity of your algorithm? Your algorithm must work in $o(n)$, little o of n, time.

3. Show the array that would result if we apply the Lumoto partition (just once) to the following array: $(5, 4, 3, 2, 1, 6, 7, 3, 4)$.)