Minimum Spanning Trees
CSE 680

Suggested Reading: Chapter 23.

1 Greedy Method

Optimization Problem:
Construct a sequence or a set of elements \(\{x_1, \ldots, x_k\} \) that satisfies some given constraints and optimizes a given objective function.

The Greedy Method

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do}
\]
\[
\text{select an element for } x_i \text{ that looks best at this moment}
\]
2 Minimum Spanning Trees

• Spanning tree: A spanning tree of a connected undirected graph is a subgraph that forms a tree and includes all vertices of the graph.

• Weight (or cost) of spanning trees: Let $T \subseteq E$ be the set of edges of a spanning tree of a weighted graph. The weight (or cost) of T is

$$\text{cost}(T) = \sum_{e \in T} w(e)$$

where $w(e)$ is the weight of edge e.

• Problem: Given a connected weighted graph $G = (V, E)$, find a spanning tree of minimum cost.

• Assume $V = \{1, 2, \ldots, n\}$.
3 Prim’s Algorithm

function Prim($G = (V, E)$)

$E' \leftarrow \emptyset$

$V' \leftarrow \{1\}$

for $i \leftarrow 1$ to $n - 1$ do

find an edge (u, v) of minimum cost such that $u \in V'$ and $v \notin V'$

$E' \leftarrow E' \cup \{(u, v)\}$

$V' \leftarrow V' \cup \{v\}$

return(E')

Implementation:

- The given graph is represented by a two-dimensional array $cost[1..n, 1..n]$.

- To represent V', we use an array called $nearest[1..n]$, defined as below:

$$ nearest[i] = \begin{cases}
0 & \text{if } i \in V' \\
\text{the node in } V' \text{ that is “nearest” to } i, & \text{if } i \notin V'
\end{cases} $$

- Initialization of $nearest$:

$nearest(1) = 0$;

$nearest(i) = 1$ for $i \neq 1$.
• To implement “find an edge \((u, v)\) of minimum cost such that \(u \in V'\) and \(v \notin V'\):\

\[
\begin{align*}
\text{min} & \leftarrow \infty \\
\text{for } i & \leftarrow 1 \text{ to } n \text{ do} \\
& \quad \text{if nearest}(i) \neq 0 \text{ and } \text{cost}(i, \text{nearest}(i)) < \text{min} \text{ then} \\
& \quad \quad \text{min} \leftarrow \text{cost}(i, \text{nearest}(i)) \\
& \quad \quad v \leftarrow i \\
& \quad \quad u \leftarrow \text{nearest}(i)
\end{align*}
\]

• To implement “\(V' \leftarrow V' \cup \{v\}\)”, we update nearest as follows:

\[
\begin{align*}
\text{nearest}(v) & \leftarrow 0 \\
\text{for } i & \leftarrow 1 \text{ to } n \text{ do} \\
& \quad \text{if nearest}(i) \neq 0 \text{ and } \text{cost}(i, v) < \text{cost}(i, \text{nearest}(i)) \text{ then} \\
& \quad \quad \text{nearest}(i) \leftarrow v
\end{align*}
\]

Complexity: \(O(n^2)\)
Correctness Proof:

A set of edges is said to be **promising** if it can be expanded to a minimum cost spanning tree.

Lemma 1 If a tree T is promising and $e = (u, v)$ is an edge of minimum cost such that u is in T and v is not, then $T \cup \{(u, v)\}$ is promising.

Proof. Assume that T is promising and $e = (u, v)$ is an edge of minimum cost such that u is in T and v is not. Being promising, T is contained in a minimum spanning tree of G, say T_{min}. Thus, $T \subseteq T_{\text{min}}$. Now, we want to show that $T \cup \{e\}$ is promising. Consider two cases:

1. If $e \in T_{\text{min}}$, then $T \cup \{e\} \subseteq T_{\text{min}}$, and thus $T \cup \{e\}$ is promising.

2. If $e \notin T_{\text{min}}$, adding e to T_{min} will create a cycle. The cycle contains an edge $e' = (u', v') \neq e$ such that u' is in T and v' is not. Since e has minimum cost, $\text{cost}(e) \leq \text{cost}(e')$. Substituting e for e' will result in a spanning tree T_{min}' that contains $T \cup \{e\}$. Obviously, $\text{cost}(T_{\text{min}}') \leq \text{cost}(T_{\text{min}})$. Therefore, T_{min}' is a minimum spanning tree, and $T \cup \{e\}$ is promising.

Q.E.D.

Theorem 1 The tree generated by Prim’s algorithm has minimum cost.
Proof. Let $T_0 = \emptyset$ and $T_i (1 \leq i \leq n - 1)$ be the tree as of the end of the ith iteration. T_0 is promising. By Lemma 1 and induction, T_1, \ldots, T_{n-1} are all promising. So, T_{n-1} is a minimum cost spanning tree. Q.E.D.
4 Kruskal’s Algorithm

Sort edges by increasing cost

\[
T \leftarrow \emptyset
\]

repeat

\[
(u, v) \leftarrow \text{next edge}
\]

if adding \((u, v)\) to \(T\) will not create a cycle then

\[
T \leftarrow T \cup \{(u, v)\}
\]

until \(T\) has \(n - 1\) edges

Analysis: If we use an array \(E[1..e]\) to represent the graph and use the union-find data structure to represent the forest \(T\), then the time complexity of Kruskal Algorithm is \(O(e \log n)\), where \(e\) is the number of edges in the graph.
5 The union-find data structure

There are N objects numbered 1, 2, \ldots, N.

Initial situation: \{1\}, \{2\}, \ldots, \{N\}.

We expect to perform a sequence of find and union operations.

Data structure: use an integer array $A[1..N]$ to represent the sets.

\begin{verbatim}
procedure init(A)
 for $i \leftarrow 1$ to N do $A[i] \leftarrow 0$

procedure find(x)
 $i \leftarrow x$
 while $A[i] > 0$ do $i \leftarrow A[i]$
 return(i)

procedure union(a, b)
 case
end
\end{verbatim}

Theorem 2 After an arbitrary sequence of union operations starting from the initial situation, a tree containing k nodes will have a height at most $\lceil \log k \rceil$.