Dynamic Programming

Reading: CLRS Chapter 15 & Section 25.2

CSE 2331 Algorithms
Steve Lai
Optimization Problems

- Problems that can be solved by dynamic programming are typically optimization problems.
- Optimization problems: Construct a set or a sequence of elements \(\{y_1, \ldots, y_k\} \) that satisfies a given constraint and optimizes a given objective function.
Problems and Subproblems

• Consider the sorting problem:
 Given a set of \(n \) elements, \(A = \{a_1, a_2, a_3, \ldots, a_n\} \), sort \(A \).

• Let \(P(i, j) \) denote the problem of sorting
 in \(A_{ij} = \{a_i, a_{i+1}, \ldots, a_j\} \), where \(1 \leq i \leq j \leq n \).

• We have a class of similar problems, indexed by \((i, j) \).

• The original problem is \(P(1,n) \).
Dynamic Programming: basic ideas (1)

- Problem: construct an optimal solution \((x_1, \ldots, x_k)\).
- There are several options for \(x_1\), say, \(op_1, op_2, \ldots, op_d\).
- Each option \(op_j\) leads to a subproblem \(P_j\): given \(x_1 = op_j\), find an optimal solution \((x_1 = op_j, x_2, \ldots, x_k)\).
- The best of these optimal solutions, i.e.,
 \[
 \text{Best}\left\{(x_1 = op_j, x_2, \ldots, x_k) : 1 \leq j \leq d\right\}
 \]
 is an optimal solution to the original problem.
Dynamic Programming: basic ideas (2)

- Apply the same reasoning to each subproblem, sub-subproblem, sub-sub-subproblem, and so on.
- Have a tree of the original problem (root) and subproblems.
- Dynamic programming works when these subproblems have many duplicates, are of the same type, and we can describe them using, typically, one or two parameters.
- The tree of problem/subproblems (which is of exponential size) now condenses to a smaller, polynomial-size graph.
- Now solve the subproblems from the "leaves".
Design a Dynamic Programming Algorithm

1. View the problem as constructing an opt. seq. \((x_1, \ldots, x_k)\).
2. There are several options for \(x_1\), say, \(op_1, op_2, \ldots, op_d\).
 Each option \(op_j\) leads to a subproblem.
3. Denote each problem/subproblem by a small number of parameters, the fewer the better.
4. Define the objective function to be optimized using these parameter(s).
5. Formulate a recurrence relation.
6. Determine the boundary condition and the goal.
7. Implement the algorithm.
Shortest Path

- Problem: Let $G = (V, E)$ be a directed acyclic graph (DAG). Let G be represented by a matrix:

$$d(i, j) = \begin{cases}
\text{length of edge } (i, j) & \text{if } (i, j) \in E \\
0 & \text{if } i = j \\
\infty & \text{otherwise}
\end{cases}$$

Find a shortest path from a given node u to a given node v.
Dynamic Programming Solution

1. View the problem as constructing an opt. seq. $\langle x_1, \ldots, x_k \rangle$. Here we want to find a sequence of nodes $\langle x_1, \ldots, x_k \rangle$ such that (u, x_1, \ldots, x_k, v) is a shortest path from u to v.

2. There are several options for x_1, say, op_1, op_2, \ldots, op_d. Each option op_j leads to a subproblem.
 - Options for x_1 are the nodes x which have an edge from u.
 - The subproblem corresponding to option x is:
 Find a shortest path from x to v.
3. Denote each problem/subproblem by a small number of parameters, the fewer the better.

4. Define the objective function to be optimized using these parameter(s).
 - These two steps are usually done simultaneously.
 - Let \(f(x) \) denote the shortest distance from \(x \) to \(v \).

5. Formulate a recurrence relation.

\[
f(x) = \min \{d(x, y) + f(y) : (x, y) \in E\}, \text{ if } x \neq v \text{ and out-degree}(x) \neq 0.
\]
6. Determine the boundary condition.

\[f(x) = \begin{cases}
0 & \text{if } x = v \\
\infty & \text{if } x \neq v \text{ and } \text{out-degree}(x) = 0
\end{cases} \]

7. What's the goal?

- Our goal is to compute \(f(u) \).
- Once we know how to compute \(f(u) \), it will be easy to construct a shortest path from \(u \) to \(v \).
- I.e., we compute the shortest distance from \(u \) to \(v \), and then construct a path having that distance.

8. Implement the algorithm.
Computing $f(u)$ (version 1)

function shortest(x)

//computing $f(x)$//

global $d[1..n, 1..n]$

if $x = v$ then return (0)

elseif out-degree(x) = 0 then return (∞)

else return $\left(\min \{ d(x, y) + \text{shortest}(y) : (x, y) \in E \} \right)$

• Initial call: shortest(u)

• Question: What's the worst-case running time?
Computing $f(u)$ (version 2)

function shortest(x)
 //computing $f(x)$//
 global $d[1..n, 1..n]$, $F[1..n]$, $Next[1..n]$
 if $F[x] = -1$ then
 if $x = \nu$ then $F[x] \leftarrow 0$
 elseif out-degree(x) = 0 then $F[x] \leftarrow \infty$
 else
 $F[x] \leftarrow \min \{d(x, y) + \text{shortest}(y) : (x, y) \in E\}$
 $Next[x] \leftarrow$ the node y that yielded the min
 return($F[x]$)
Main Program

procedure shortest-path(u, v)
 // find a shortest path from u to v //
 global d[1..n, 1..n], F[1..n], Next[1..n]
 initialize Next[v] ← 0
 initialize F[1..n] ← −1
 SD ← shortest(u) //shortest distance from u to v//
 if SD < ∞ then //print the shortest path//
 k ← u
 while k ≠ 0 do {write(k); k ← Next[k]}
Time Complexity

- Number of calls to shortest: $O(|E|)$
- How much time does shortest(x) need for a particular x?
 - The first call: $O(1)$ + time to find x's outgoing edges
 - Subsequent calls: $O(1)$ per call
- The over-all worst-case running time of the algorithm is
 - $O(|E|) \cdot O(1)$ + time to find all nodes' outgoing edges
 - If the graph is represent by an adjacency matrix: $O(|V|^2)$
 - If the graph is represent by adjacency lists: $O(|V| + |E|)$
Matrix-chain Multiplication

- Problem: Given n matrices M_1, M_2, \ldots, M_n, where M_i is of dimensions $d_{i-1} \times d_i$, we want to compute the product $M_1 \times M_2 \times \cdots \times M_n$ in a least expensive order, assuming that the cost for multiplying an $a \times b$ matrix by a $b \times c$ matrix is abc.

- Example: want to compute $A \times B \times C$, where A is 10×2, B is 2×5, C is 5×10.
 - Cost of computing $(A \times B) \times C$ is $100 + 500 = 600$
 - Cost of computing $A \times (B \times C)$ is $200 + 100 = 300$
Dynamic Programming Solution

• We want to determine an optimal \((x_1, \ldots, x_{n-1})\), where
 \(x_1\) means which two matrices to multiply first,
 \(x_2\) means which two matrices to multiply next, and
 \(x_{n-1}\) means which two matrices to multiply lastly.

• Consider \(x_{n-1}\). (Why not \(x_1\)?)

• There are \(n-1\) choices for \(x_{n-1}\):
 \[
 (M_1 \times \cdots \times M_k) \times (M_{k+1} \times \cdots \times M_n), \text{ where } 1 \leq k \leq n-1.
 \]

• A general problem/subproblem is to multiply \(M_i \times \cdots \times M_j\),
 which can be naturally denoted by \((i, j)\).
Dynamic Programming Solution

• Let $Cost(i, j)$ denote the minimum cost for computing $M_i \times \cdots \times M_j$.

• Recurrence relation:

$$Cost(i, j) = \min_{i \leq k < j} \left\{ Cost(i, k) + Cost(k + 1, j) + d_{i-1} d_k d_j \right\}.$$

• Boundary condition: $Cost(i, i) = 0$ for $1 \leq i \leq n$.

• Goal: $Cost(1, n)$
Algorithm (recursive version)

function MinCost(i, j)

global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]

// initially, Cost[i, j] ← 0 if i = j, and Cost[i, j] ← −1 if i ≠ j

if Cost[i, j] < 0 then
 Cost[i, j] ← \text{min}_{i \leq k < j} \{ \text{MinCost}(i, k) + \text{MinCost}(k + 1, j) + d[i - 1] \cdot d[k] \cdot d[j] \}

Cut[i, j] ← the index k that gave the minimum in the last statement

return (Cost[i, j])
Algorithm (non-recursive version)

procedure MinCost

global $d[0..n]$, $Cost[1..n, 1..n]$, $Cut[1..n, 1..n]$

initialize $Cost[i, i] \leftarrow 0$ for $1 \leq i \leq n$

for $i \leftarrow n - 1$ to 1 do

for $j \leftarrow i + 1$ to n do

\[
Cost[i, j] \leftarrow \min_{i \leq k < j} \left\{ Cost(i, k) + Cost(k + 1, j) + d[i - 1] \cdot d[k] \cdot d[j] \right\}
\]

$Cut[i, j] \leftarrow$ the index k that gave the minimum in the last statement
Computing $M_i \times \cdots \times M_j$

function MatrixProduct(i, j)

// Return the product $M_i \times \cdots \times M_j$ //

global $Cut[1..n, 1..n]$, M_1, \ldots, M_n

if $i = j$ then return(M_i)

else

$k \leftarrow Cut[i, j]$

return$(\text{MatrixProduct}(i, k) \times \text{MatrixProduct}(k + 1, j))$
Main Program

global $d[0..n]$, $Cost[1..n, 1..n]$, $Cut[1..n, 1..n]$

global M_1, \ldots, M_n

Call MinCost (or MinCost(1, n), the recursive version)
Call MatrixProduct(1, n)

Time complexity: $\Theta(n^3)$
Longest Common Subsequence

- **Problem:** Given two sequences

\[A = (a_1, a_2, \ldots, a_n) \]
\[B = (b_1, b_2, \ldots, b_n) \]

find a longest common subsequence of \(A \) and \(B \).

- To solve it by dynamic programming, we view the problem as finding an optimal sequence \((x_1, x_2, \ldots, x_k)\) and ask: what choices are there for \(x_1 \)? (Or what choices are there for \(x_k \)?)
Approach 1 (not efficient)

- View \((x_1, x_2, \ldots)\) as a subsequence of \(A\).
- So, the choices for \(x_1\) are \(a_1, a_2, \ldots, a_n\).
- Let \(L(i, j)\) denote the length of a longest common subseq of \(A_i = (a_i, a_{i+1}, \ldots, a_n)\) and \(B_j = (b_j, b_{j+1}, \ldots, b_n)\).
- Recurrence: \(L(i, j) = \max_{i \leq k \leq n} \{ L(k + 1, \varphi(k, j) + 1) \} + 1\).
- \(\varphi(k, j)\) is the index of the first character in \(B_j\) equal to \(a_k\), or \(n + 1\) if no such character.
- Boundary condition: \(L(i, j) = 0\), if \(i = n + 1\) or \(j = n + 1\)
 \(L(i, n + 2) = -\infty\), \(1 \leq i \leq n + 1\)
- Running time: \(\Theta(n^3)\)
Approach 2 (not efficient)

- View \((x_1, x_2, \ldots)\) as a sequence of 0/1, where \(x_i\) indicates whether or not to include \(a_i\).
- The choices for each \(x_i\) are 0 and 1.
- Let \(L(i, j)\) denote the length of a longest common subseq of \(A_i = (a_i, a_{i+1}, \ldots, a_n)\) and \(B_j = (b_j, b_{j+1}, \ldots, b_n)\).
- Recurrence:
 \[
 L(i, j) = \max \begin{cases}
 1 + L(i + 1, \varphi(i, j) + 1) \\
 L(i + 1, j)
 \end{cases}
 \]
- \(\varphi(k, j)\) is as defined in approach 1.
- Boundary condition: same as in approach 1.
- Running time: \(\Theta(n^2)\) + time for computing \(\varphi(1..n,1..n)\).
Approach 3

- View \((x_1, x_2, \ldots)\) as a sequence of decisions, where
 - \(x_1\) indicates whether to
 - include \(a_1 = b_1\) (if \(a_1 = b_1\))
 - exclude \(a_1\) or exclude \(b_1\) (if \(a_1 \neq b_1\))
- Let \(L(i, j)\) denote the length of a longest common subseq
of \(A_i = (a_i, a_{i+1}, \ldots, a_n)\) and \(B_j = (b_j, b_{j+1}, \ldots, b_n)\).
- Recurrence: \(L(i, j) = \begin{cases}
1 + L(i + 1, j + 1) & \text{if } a_i = b_j \\
\max\{L(i + 1, j), L(i, j + 1)\} & \text{if } a_i \neq b_j
\end{cases}\)
- Boundary: \(L(i, j) = 0, \text{ if } i = n + 1 \text{ or } j = n + 1\)
- Running time: \(\Theta(n^2)\)
All-Pair Shortest Paths

• Problem: Let $G(V, E)$ be a weighted directed graph. For every pair of nodes u, v, find a shortest path from u to v.

• DP approach:
 • $\forall u, v \in V$, we are looking for an optimal sequence (x_1, x_2, \ldots, x_k).
 • What choices are there for x_1?
 • To answer this, we need to know the meaning of x_1.

Approach 1

- x_1: the next node.
- What choices are there for x_1?
- How to describe a subproblem?
Approach 2

- x_1: going through node 1 or not?
- What choices are there for x_1?
- Taking the backward approach, we ask whether to go through node n or not.
- Let $D^k(i, j)$ be the length of a shortest path from i to j with intermediate nodes in $\{1, 2, \ldots, k\}$.
- Then, $D^k(i, j) = \min\{D^{k-1}(i, j), D^{k-1}(i, k) + D^{k-1}(k, j)\}$.

\[D^0(i, j) = \begin{cases}
\text{weight of edge (i, j)} & \text{if } (i, j) \in E \\
0 & \text{if } i = j \\
\infty & \text{otherwise}
\end{cases} \] (1)
Straightforward implementation

initialize $D^0[1..n, 1..n]$ by Eq. (1)

for $k \leftarrow 1$ to n do

 for $i \leftarrow 1$ to n do

 for $j \leftarrow 1$ to n do

 if $D^{k-1}[i, k] + D^{k-1}[k, j] < D^{k-1}[i, j]$ then

 $D^k[i, j] \leftarrow D^{k-1}[i, k] + D^{k-1}[k, j]$

 $P^k[i, j] \leftarrow 1$

 else $D^k[i, j] \leftarrow D^{k-1}[i, j]$

 $P^k[i, j] \leftarrow 0$
Eliminate the k in $D^k[1..n, 1..n], P^k[1..n, 1..n]$

- If $i \neq k$ and $j \neq k$:

 We need $D^{k-1}[i, j]$ only for computing $D^k[i, j]$.

 Once $D^k[i, j]$ is computed, we don't need to keep $D^{k-1}[i, j]$.

- If $i = k$ or $j = k$:
 $D^k[i, j] = D^{k-1}[i, j]$.

- What does $P^k[i, j]$ indicate?

- Only need to know the largest k such that $P^k[i, j] = 1$.
Floyd's Algorithm

initialize $D[1..n, 1..n]$ by Eq. (1)
initialize $P[1..n, 1..n] ← 0$
for $k ← 1$ to n do
 for $i ← 1$ to n do
 for $j ← 1$ to n do
 if $D[i, k] + D[k, j] < D[i, j]$ then
 $D[i, j] ← D[i, k] + D[k, j]$
 $P[i, j] ← k$
Sum of Subset

• Given a multiset of positive integers $A = \{a_1, a_2, \ldots, a_n\}$ and another positive integer M, determine whether there is a subset $B \subseteq A$ such that $\text{Sum}(B) = M$, where $\text{Sum}(B)$ means the sum of integers in B.

• This problem is NP-hard.