Minimum Spanning Trees
CSE 2331

Suggested Reading: Chapter 23.

1 Greedy Method

Optimization Problem:
Construct a sequence or a set of elements \(\{x_1, \ldots, x_k\} \) that satisfies some
given constraints and optimizes a given objective function.

The Greedy Method

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do}
\]
\[
\text{select an element for } x_i \text{ that looks best at this moment}
\]
2 Minimum Spanning Trees

• Spanning tree: A spanning tree of a connected undirected graph is a subgraph that forms a tree and includes all vertices of the graph.

• Weight (or cost) of spanning trees: Let $T \subseteq E$ be the set of edges of a spanning tree of a weighted graph. The weight (or cost) of T is

$$cost(T) = \sum_{e \in T} w(e)$$

where $w(e)$ is the weight of edge e.

• Problem: Given a connected weighted graph $G = (V, E)$, find a spanning tree of minimum cost.

• Assume $V = \{1, 2, \ldots, n\}$.
3 Prim’s Algorithm

function Prim($G = (V, E)$)

$E' ← ∅$
$V' ← \{1\}$

for $i ← 1$ to $n - 1$ do

find an edge ($u; v$) of minimum cost such that $u \in V'$ and $v \notin V'$

$E' ← E' \cup \{(u, v)\}$
$V' ← V' \cup \{v\}$

return(E')

Implementation:

- The given graph is represented by a two-dimensional array $cost[1..n, 1..n]$.

- To represent V', we use an array called $nearest[1..n]$, defined as below:

\[
nearest[i] = \begin{cases}
0 & \text{if } i \in V' \\
\text{the node in } V' \text{ that is “nearest” to } i & \text{if } i \notin V'
\end{cases}
\]

- Initialization of $nearest$:

$nearest(1) = 0$;
$nearest(i) = 1$ for $i \neq 1$.
• To implement “find an edge \((u, v)\) of minimum cost such that \(u \in V'\) and \(v \notin V'\):

\[
\begin{align*}
\text{min} & \leftarrow \infty \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\quad \text{if } \text{nearest}(i) \neq 0 \text{ and } \text{cost}(i, \text{nearest}(i)) < \text{min} & \text{ then} \\
\quad \quad \text{min} & \leftarrow \text{cost}(i, \text{nearest}(i)) \\
\quad v & \leftarrow i \\
\quad u & \leftarrow \text{nearest}(i)
\end{align*}
\]

• To implement “\(V' \leftarrow V' \cup \{v\}\)”, we update nearest as follows:

\[
\begin{align*}
\text{nearest}(v) & \leftarrow 0 \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\quad \text{if } \text{nearest}(i) \neq 0 \text{ and } \text{cost}(i, v) < \text{cost}(i, \text{nearest}(i)) & \text{ then} \\
\quad \quad \text{nearest}(i) & \leftarrow v
\end{align*}
\]

Complexity: \(O(n^2)\)
Correctness Proof:

A set of edges is said to be promising if it can be expanded to a minimum cost spanning tree.

Lemma 1 If a tree T is promising and $e = (u,v)$ is an edge of minimum cost such that u is in T and v is not, then $T \cup \{(u,v)\}$ is promising.

Proof. Assume that T is promising and $e = (u,v)$ is an edge of minimum cost such that u is in T and v is not. Being promising, T is contained in a minimum spanning tree of G, say T_{\min}. Thus, $T \subseteq T_{\min}$. Now, we want to show that $T \cup \{e\}$ is promising. Consider two cases:

1. If $e \in T_{\min}$, then $T \cup \{e\} \subseteq T_{\min}$, and thus $T \cup \{e\}$ is promising.

2. If $e \notin T_{\min}$, adding e to T_{\min} will create a cycle. The cycle contains an edge $e' = (u',v') \neq e$ such that u' is in T and v' is not. Since e has minimum cost, $\text{cost}(e) \leq \text{cost}(e')$. Substituting e for e' will result in a spanning tree T'_{\min} that contains $T \cup \{e\}$. Obviously, $\text{cost}(T'_{\min}) \leq \text{cost}(T_{\min})$. Therefore, T'_{\min} is a minimum spanning tree, and $T \cup \{e\}$ is promising.

Q.E.D.

Theorem 1 The tree generated by Prim’s algorithm has minimum cost.

Proof. Let $T_0 = \emptyset$ and T_i ($1 \leq i \leq n - 1$) be the tree as of the end of the ith iteration. T_0 is promising. By Lemma 1 and induction, T_1, \ldots, T_{n-1} are all promising. So, T_{n-1} is a minimum cost spanning tree. Q.E.D.
4 Kruskal’s Algorithm

Sort edges by increasing cost

\[T \leftarrow \emptyset \]

repeat

\[(u, v) \leftarrow \text{next edge} \]

if adding \((u, v)\) to \(T\) will not create a cycle then

\[T \leftarrow T \cup \{(u, v)\} \]

until \(T\) has \(n - 1\) edges

Analysis: If we use an array \(E[1..e]\) to represent the graph and use the union-find data structure to represent the forest \(T\), then the time complexity of Kruskal Algorithm is \(O(e \log n)\), where \(e\) is the number of edges in the graph.
5 The union-find data structure

There are \(N \) objects numbered 1, 2, \ldots, \(N \).

Initial situation: \{1\}, \{2\}, \ldots, \{N\}.

We expect to perform a sequence of find and union operations.

Data structure: use an integer array \(A[1..N] \) to represent the sets.

\[
\begin{align*}
\text{procedure } & \text{init}(A) \\
& \text{for } i \leftarrow 1 \text{ to } N \text{ do } A[i] \leftarrow 0
\end{align*}
\]

\[
\begin{align*}
\text{procedure } & \text{find}(x) \\
& i \leftarrow x \\
& \text{while } A[i] > 0 \text{ do } i \leftarrow A[i] \\
& \text{return}(i)
\end{align*}
\]

\[
\begin{align*}
\text{procedure } & \text{union}(a, b) \\
& \text{case} \\
& \text{end}
\end{align*}
\]

Theorem 2 After an arbitrary sequence of union operations starting from the initial situation, a tree containing \(k \) nodes will have a height at most \(\lceil \log k \rceil \).
6 Single Source Shortest Path

• Problem: Given an undirected, connected, weighted graph \(G(V, E) \) and a node \(s \in V \), find a shortest path between \(s \) and \(x \) for each \(x \in V \). (Assume positive weights.)

• Assume \(V = \{1, 2, \ldots, n\} \).

• Observation: a shortest path between \(s \) and \(v \) may only pass through nodes which are closer to \(s \) than is \(v \).

• That is, if \(d(v_1) \leq d(v_2) \leq d(v_3) \leq \cdots \leq d(v_n) \), where \(d(x) \) denotes the shortest distance between \(s \) and \(x \), then a shortest path between \(s \) and \(v_k \) may only pass through nodes in \(\{v_1, \ldots, v_{k-1}\} \).

• We will compute the shortest distance between \(s \) and \(v_k \) in the order of \(v_1, v_2, v_3, \ldots, v_n \).
Dijkstra’s Algorithm \((G = (V, E), s)\)

\[
\begin{align*}
D[s] & \leftarrow 0 \\
Parent[s] & \leftarrow 0 \\
V' & \leftarrow \{s\}
\end{align*}
\]

for \(i \leftarrow 1\) to \(n - 1\) do

find an edge \((u, v)\) such that \(u \in V', v \notin V'\) and \(D[u] + \text{length}[u, v]\) is minimum;

\[
\begin{align*}
D[v] & \leftarrow D[u] + \text{length}[u, v]; \\
Parent[v] & \leftarrow u; \\
V' & \leftarrow V' \cup \{v\};
\end{align*}
\]

endfor

Data Structures:

- The given graph: \(\text{length}[1..n, 1..n]\).
- Shortest distances: \(D[1..n]\), where \(D[i]\) = the shortest distance between \(s\) and \(i\). Initially, \(D[s] = 0\).
- Shortest paths: \(Parent[1..n]\). Initially, \(Parent[s] = 0\).
- \(\text{nearest}[1..n]\), where

\[
\text{nearest}[i] = \begin{cases}
0 & \text{if } i \in V' \\
\text{the node } x \text{ in } V' \text{ that} \\
\text{minimizes } D[x] + \text{length}[x, i], & \text{if } i \notin V'
\end{cases}
\]

Complexity: \(O(n^2)\)