1 Graphs

- \(G(V, E) \) — \(V \): vertex set; \(E \): edge set.
- Directed graphs, undirected graphs, weighted graphs.
- Self-loop. (Unless otherwise stated, we’ll assume no self-loops.)
- Degree, in-degree, out-degree of a vertex.
- A path from a vertex \(u \) to a vertex \(v \) is a sequence of vertices, \((v_0, v_1, \ldots, v_k)\), such that \(u = v_0 \), \(v = v_k \) and \((v_{i-1}, v_i) \in E\) for \(i = 1, 2, \ldots, k \).
- Length of path: (1) the number of edges in the path, or (2) the total weight.
- Simple path: a path with distinct vertices.
- Cycle: a path \((v_0, v_1, \ldots, v_k)\) such that \(v_0 = v_k \).
 - Directed: at least one edge
 - Undirected: at least three edges
- Simple cycle: a cycle \((v_0, v_1, \ldots, v_k)\) where \(v_1, \ldots, v_k \) are distinct.
- Acyclic graph: a graph without cycles
- Graph representations
 - Adjacency matrix
 - Adjacency lists
2 Basic Depth-First Search

procedure Search($G = (V, E)$)
 // Assume $V = \{1, 2, \ldots, n\}$ //
 // global array visited[1..n] //
 visited[1..n] \leftarrow 0;
 for $i \leftarrow 1$ to n
 if visited[i] = 0 then call dfs(i)

procedure dfs(v)
 visited[v] \leftarrow 1;
 for each node w such that $(v, w) \in E$ do
 if visited[w] = 0 then call dfs(w)

- How to implement the for-loop if an adjacency matrix A is used to represent the graph?
- In the entire depth first search, how many times is dfs() called?
- In the entire depth first search, how many times is the “if visited[w] = 0” part of the “if visited[w] = 0 then call dfs(w)” statement executed?
- Time complexity
 - Using adjacency matrix: $O(|V|^2)$
 - Using adjacency lists: $O(|V| + |E|)$
3 Connectivity

- An undirected graph is *connected* if every pair of vertices are connected by a path.

- A *connected component* is a subgraph which is connected and is not contained in any bigger connected subgraph.

- A connected component is usually identified by the vertices in that component.

Problem: Given an undirected graph, identify all its connected components.

procedure *Connected_Components*(*G* = (*V*, *E*))

// Assume *V* = {1, 2, . . . , *n*} //
// global array *component*[1..*n*] //
component[1..*n*] ← 0
cn ← 0

for *i* ← 1 to *n*
 if *component*[*i*] = 0 then
 cn ← *cn* + 1
 call *dfs*(*i*, *cn*)

procedure *dfs*(v, *cn*)

component[v] ← *cn*;

for each node *w* such that (*v*, *w*) ∈ *E* do
 if *component*[*w*] = 0 then call *dfs*(*w*, *cn*)
4 Bipartite Graph

- Definition: An undirected graph \(G(V, E)\) is said to be bipartite if \(V\) can be divided into two sets \(V_1\) and \(V_2\) such that all edges in \(G\) go between \(V_1\) and \(V_2\).

- Theorem: An undirected graph is bipartite if and only if it contains no cycle of odd length.

- Problem: Given a graph, determine if it is bipartite.

procedure Bipartite(G = (V, E))

// Assume \(V = \{1, 2, \ldots, n\}\) //
// global array visited[1..n], flag //
visited[1..n] \(\leftarrow\) 0;
flag \(\leftarrow\) true;
for \(i \leftarrow 1\) to \(n\)
 if \(visited[i] = 0\) then call \(dfs(i, 1)\)
return(flag)

procedure dfs(v, c)

\(visited[v] \leftarrow c;\)
for each node \(w\) such that \((v, w) \in E\) do
 if \(visited[w] = 0\) then call \(dfs(w, -c)\)
 elseif \(visited[w] = c\) then flag \(\leftarrow false;\)
5 Advanced Depth-First Search

procedure Search(G = (V, E))
 // Assume V = {1, 2, ..., n} //
 time ← 0;
 vn[1..n] ← 0; // vn stands for visit number */
 for i ← 1 to n
 if vn[i] = 0 then call dfs(i)

procedure dfs(v)
 vn[v] ← time ← time + 1;
 for each node w such that (v, w) ∈ E do
 if vn[w] = 0 then call dfs(w);
 fn[v] ← time ← time + 1 // fn stands for finish number */

- Depth first tree/forest, denoted as G_
- Tree edges: those edges in G_
- Forward edges: those non-tree edges (u, v) connecting a vertex u to a descendant v.
- Back edges: those edges (u, v) connecting a vertex u to an ancestor v.
- Cross edges: all other edges.
- If G is undirected, then there is no distinction between forward edges and back edges. Just call them back edges.
6 Topological Sort

- Problem: given an acyclic directed graph (DAG) $G = (V, E)$, sort the vertices into a linear list such that for every edge $(u, v) \in E$, u precedes v in the list.

- Observation: the finish numbers in descending order gives such a list.

- Algorithm:
 - Use depth-first search, with an initially empty list L.
 - At the end of procedure $dfs(v)$, insert v to the front of L.
 - L gives a topological sort of the vertices.
7 Strongly Connected Components

- A directed graph is *strongly connected* if for every two nodes \(u \) and \(v \) there is a path from \(u \) to \(v \) and one from \(v \) to \(u \).

- Decide if a graph \(G \) is strongly connected:
 - \(G \) is strongly connected iff (i) there is a path from node 1 to every other node and (ii) there is a path from every other node to node 1.
 - Condition (1) can be checked by calling \(dfs(1) \) on \(G \) and then checking if all nodes have been visited.
 - Condition (2) can be checked by calling \(dfs(1) \) on \(G^T \) and then checking if all nodes have been visited, where \(G^T \) is the graph obtained from \(G \) by reversing the edges.

- A *strongly connected component* of a directed graph is a subgraph which is strongly connected and is not contained in any bigger strongly connected subgraph.

- An interesting problem is to find all strongly connected components of a directed graph.

- Each node belongs in exactly one component. So, we identify each component by its vertices.

- The component containing \(v \) equals
 \[
 \{dfs(v) \text{ on } G\} \cap \{dfs(v) \text{ on } G^T\},
 \]
 where \(\{dfs(v) \text{ on } G\} \) denotes the set of all vertices visited during \(dfs(v) \) on \(G \).
• Algorithm:

1. Apply depth-first search to G and compute $fn[u]$ for each node.
2. Compute G^T.
3. Apply depth-first search to G^T:

 \[
 \text{visited}[1..n] \leftarrow 0
 \]

 \[
 \text{for each vertex } u \text{ in decreasing order of } fn[u] \text{ do}
 \]

 \[
 \text{if visited}[u] = 0 \text{ then call dfs}(u)
 \]

4. The vertices on each tree in the depth-first forest of the preceding step form a strongly connected component.