1 Running Time

- Analysis of algorithm: to estimate the running time of an algorithm.

- Elementary operations:
 - arithmetic and boolean operations: +, −, ×, ÷, mod, div, and, or
 - comparison: if $a < b$, if $a = b$, etc.
 - branching: go to
 - assignment: $a \leftarrow b$
 - and so on

- The running time of an algorithm is the number of elementary operations required to execute the algorithm.

- It depends on the input (instance):
 - size of the input
 - content of the input

- The worst-case running time of an algorithm:

$$T(n) = \max\{\text{running time over all instances of size } n\}$$

- Express $T(n)$ in the O, Ω, or Θ notation.

- These are called asymptotic notations. They describe the behavior of a function $f(n)$ when n is sufficiently large.

- A function $f(n)$ is asymptotically positive if $f(n)$ is positive for sufficiently large n.

- A function $f(n)$ is asymptotically increasing if $f(n)$ is increasing for sufficiently large n.
2 \textit{O-Notation}

Note: Unless otherwise indicated, all functions considered in this class are assumed to be asymptotically nonnegative.

- Conventional Definition: We say \(f(n) = O(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \).

- If \(f(n) = O(g(n)) \), then \(g(n) \) is said to be an asymptotic upper bound of \(f(n) \).

- More Abstract Definition:

\[
O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \\
\text{such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \}
\]

That is,

\[
O(g(n)) = \{ f(n) : f(n) = O(g(n)) \text{ in the conventional meaning} \}
\]

- Thus, the following all have the same meaning:
 - \(f(n) \in O(g(n)) \).
 - \(f(n) = O(g(n)) \).

- Question: Does \(f(n) = O(g(n)) \) mean that \(f(n) \) and \(g(n) \) are in the same order of magnitude?
• Theorem 1 If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$ then

1. $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$
2. $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$

Proof. $f_1(n) \leq c_1 g_1(n)$ and $f_2(n) \leq c_2 g_2(n)$ for large n. Thus,

$$f_1(n) + f_2(n) \leq c_1 g_1(n) + c_2 g_2(n)$$

$$\leq c_1 \max(g_1(n), g_2(n)) + c_2 \max(g_1(n), g_2(n))$$

$$\leq (c_1 + c_2) \max(g_1(n), g_2(n)).$$

By definition, equation 1 holds. Equation 2 can be similarly proved. Q.E.D.
3 Ω, Θ, o, ω Notation

- **Conventional Definition of Ω:** We say $f(n) = \Omega(g(n))$ iff there exist positive constants c, n_0 such that $f(n) \geq cg(n)$ for all $n \geq n_0$.

- **If $f(n) = \Omega(g(n))$, then $g(n)$ is said to be an asymptotic lower bound of $f(n)$.**

- **More Abstract Definition of Ω:**
 \[
 \Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \geq cg(n) \text{ for all } n \geq n_0 \}
 \]

 That is,
 \[
 \Omega(g(n)) = \{ f(n) : f(n) = \Omega(g(n)) \text{ in the conventional meaning} \}
 \]

- **Theorem 2** If $f_1(n) = \Omega(g_1(n))$ and $f_2(n) = \Omega(g_2(n))$ then
 1. $f_1(n) + f_2(n) = \Omega(\max(g_1(n), g_2(n)))$
 2. $f_1(n) \cdot f_2(n) = \Omega(g_1(n) \cdot g_2(n))$

- **Definition of Θ:**
 \[
 f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)).
 \]

 In terms of sets, $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$.

- **Definition of o:** $f(n) = o(g(n))$ if $\lim_{n \to \infty} f(n)/g(n) = 0$.

- **Definition of ω:** $f(n) = \omega(g(n))$ if $\lim_{n \to \infty} f(n)/g(n) = \infty$.
4 Properties of Asymptotic Notation

- \(f(n) = O(f(n)) \).
- If \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) then \(f(n) = O(h(n)) \).
- \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \).
- \(f(n) = \Theta(g(n)) \) iff \(g(n) = \Theta(f(n)) \).
- \(\log_a n = \Theta(\log_b n) \) if \(a, b > 1 \).
- \(a^n \neq \Theta(b^n) \) if \(a \neq b \).

5 Some Notations, Functions, Formulas

- \([x] = \) the floor of \(x \).
- \(\lceil x \rceil = \) the ceiling of \(x \).
- \(\log n = \log_2 n \).
- \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2) \).
- For a constant \(k > 0, 1 + 2^k + 3^k + \cdots + n^k = \Theta(n^{k+1}) \).
- If \(a \neq 1 \), then
 \[1 + a + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a} = \frac{a^{n+1} - 1}{a - 1} \]
- If \(a > 1 \), then \(1 + a + a^2 + \cdots + a^n = \Theta(a^n) \).
- If \(0 \leq a < 1 \), then \(1 + a + a^2 + \cdots + a^n = \Theta(1) \).
- If \(f(x) \) is monotonically increasing, then
 \[\int_{m-1}^{n} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x)dx. \]
- If \(f(x) \) is monotonically decreasing, then
 \[\int_{m}^{n+1} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n} f(x)dx. \]
Approximating by integrals, we can estimate $\sum_{k=1}^{n} 1/k$ as follows.

\[
\int_{1}^{n+1} \frac{dx}{x} \leq \sum_{k=1}^{n} \frac{1}{k} \leq 1 + \sum_{k=2}^{n} \frac{1}{k} \leq 1 + \int_{1}^{n} \frac{dx}{x} \\
\ln(n + 1) \leq \sum_{k=1}^{n} \frac{1}{k} \leq 1 + \ln n \\
\sum_{k=1}^{n} \frac{1}{k} = \Theta(\ln n) = \Theta(\log n)
\]