CSE 3461: Introduction to Computer Networking and Internet Technologies

Local Area Networks

Presentation E

Study: 15.1, 15.2, 15.3, 15.4, 15.5, 16.1, 16.2

Kannan Srinivasan

09-18-2012

Introduction

- · LAN characteristics:
 - Use packet broadcasting
 - Costs are relatively low
 - Speeds are high
 - Encompass limited geographical areas
 - Almost always belong to one organization
- LAN architectures characterized by:
 - Topologies
 - Transmission medium
 - Medium access control
- LAN applications: personal computer LANs, high speed office networks, backbone LANs (interconnect low speed local LANs), back end networks (interconnecting large systems), storage area networks (network handling storage needs)

IEEE 802 Reference Model

- Physical
 - Encoding/decoding
 - Preamble generation/removal
 - Bit transmission/reception
 - Transmission medium and topology
- Media access control (MAC)
 - Govern access to transmission medium
 - Not found in traditional layer 2 data link control
- Logical link control (LLC)
 - Interface to higher levels
 - Flow and error control
 - For the same LLC, several MAC options may be available

Bus and Tree Topologies

- · Multipoint medium
- Transmission propagates throughout medium
- Heard by all stations
 - Need to identify target station and each station has unique address
- Full duplex connection between station and tap
 - Allows for transmission and reception
- Need to regulate transmission (medium access control)
 - To avoid collisions
- Terminator absorbs (and remove) frames at end of medium

Figure 15.4 (a) C transmits frame addressed to A (b) Frame is not addressed to B; B ignores it (c) A copies frame as it goes by (d) C absorbs returning frame g. babic

Ring Topologies

- Repeaters joined by point to point links in closed loop
 - Receive data on one link and retransmit on another
 - Links unidirectional
 - Stations attach to repeaters
- Data in frames
 - Circulate past all stations
 - Destination recognizes address and copies frame
 - Frame circulates back to source where it is removed
- Media access control determines when station can insert frame

Star Topology

- Each station connected directly to central node
 - Usually via two point to point links
- Central node (hub or repeater) broadcasts
 - Physical star, logical bus
 - Only one station can transmit at a time
- Central node can be and act as a frame switch, instead of a hub
- Multi-level star topologies

g. babic

- · · -

12

LAN Media

- Voice grade unshielded twisted pair (UTP Cat 3)
 - Cheap, well understood, but low data rates
 - Use existing telephone wiring in office buildings
- Shielded twisted pair
 - More expensive than UTP Cat 3, but higher data rates
- · Baseband coaxial
 - More expensive than UTP, but higher data rates
 - Used in original Ethernet
 - Still used but not often in new installations
- High performance UTP (Cat 5 and above)
 - High data rate for small number of devices
 - Switched star topology for large installations

LAN Media (continued)

- Optical fiber
 - Electromagnetic isolation
 - High capacity
 - Small size
 - High cost of components

Expensive taps

- High skill needed to install and maintain
- Not used in bus LANs
- Prices are coming down as demand and product range increases
- In conclusion, hard to work with compared with star topology twisted pair

g. babic Presentation E 15

Media Access Control

- MAC layer receives data from LLC layer (or Network layer)
- Assembly of data into frame with address and error detection fields
- Destination MAC address
- Source MAC address
- CRC field
- Govern access to transmission medium for transmission and receiving frames
- Disassembly of received frame
 - Address recognition and error detection
- MAC layer discards frames detected in errors
- LLC or some upper layer retransmits unsuccessful frames

LAN Addresses

32-bit IP address:

- network-layer address
- used to get datagram to destination network (recall IP network definition)

LAN (or MAC or physical) address:

- used to get datagram from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs) burned in the adapter ROM

LAN Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address => portability
 - can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - depends on network to which one attaches

d. xuan DataLink Layer 19

Multiple Access Links and Protocols

Three types of "links":

- point-to-point (single wire, e.g. PPP, SLIP)
- broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

switched (e.g., switched Ethernet, ATM etc)

Multiple Access protocols

- single shared communication channel
- two or more simultaneous transmissions by nodes: interference
 - only one node can send successfully at a time
- multiple access protocol:
 - distributed algorithm that determines how stations share channel, i.e., determine when station can transmit
 - communication about channel sharing must use channel itself!
 - what to look for in multiple access protocols:
 - · synchronous or asynchronous
 - information needed about other stations
 - robustness (e.g., to channel errors)
 - performance

d. xuan DataLink Layer 21

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - TDMA: time division multiple access
 - FDMA: frequency division multiple access
 - CDMA (Code Division Multiple Access)
- Random Access
 - —allow collisions
 - -- "recover" from collisions
- "Taking turns"
 - tightly coordinate shared access to avoid collisions

Goal: efficient, fair, simple, decentralized

Random Access protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- two or more transmitting nodes -> "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA and ALOHA
 - CSMA and CSMA/CD

d. xuan DataLink Layer 23

Ethernet

"dominant" LAN technology:

- cheap \$20 for 100Mbs!
- first wildey used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10, 100, 1000 Mbps

Metcalfe's Etheret sketch

CSMA/CD (Ethernet) Media Access Control

- Carriers Sense Multiple Access with Collision Detection
- Introduced in early 1970's by Xerox Ethernet
- Standardized by IEEE 802.3
- Random Access
 - Stations access medium randomly
- Contention
 - Stations content for time on medium
- Evolved from Aloha and Slotted Aloha through different CSMA

g. babic Presentation E 25

CSMA: General Principles

- Carrier Sense Multiple Access
- Propagation time is much less than transmission time
- All stations know that a transmission has started almost immediately
- First listen for clear medium (carrier sense)
- If medium idle, transmit
- If two stations start at the same instant, collision
- Wait for ACK reasonable time (round trip plus small increment)
- No ACK then retransmit
- Max utilization depends on propagation time (medium length) and frame length
 - Longer frame and shorter propagation gives better utilization

1-persistent CSMA

- Station wishing to transmit listens and obeys following:
 - 1. If medium idle, transmit; otherwise, go to step 2
 - If medium busy, listen until idle; then transmit immediately
- If two or more stations waiting, collision guaranteed
 - Gets sorted out after collision

g. babic Presentation E 27

Nonpersistent CSMA

- 1. If medium is idle, transmit; otherwise, go to 2
- 2. If medium is busy, wait amount of time drawn from probability distribution (retransmission delay) and repeat 1
- Random delays reduces probability of collisions
 - Consider two stations become ready to transmit at same time while another transmission is in progress
 - If both stations delay same time before retrying, both will attempt to transmit at same time
- Capacity is wasted because medium will remain idle following end of transmission if one or more stations waiting

P-persistent CSMA

- Compromise that attempts to reduce collisions
 - Like nonpersistent
- And reduce idle time
 - Like 1-persistent
- Rules:
 - If medium idle, transmit with probability P, and delay one time unit with probability (1 – P)
 - Time unit typically maximum propagation delay
 - 2. If medium busy, listen until idle and repeat step 1
 - 3. If transmission is delayed one time unit, repeat step 1
- What is an effective value of P?

g. babic Presentation E 29

Ethernet's CSMA/CD

- With CSMA, collision occupies medium for duration of transmission
- CSMA/CD (CD = collision detection) stations listen while transmitting and collision period can be shortened.
- IEEE 802.3 uses 1-persistent CSMA/CD:
- 1. If medium idle, transmit, otherwise, step 2
- 2. If busy, listen for idle, then transmit
- 3. If collision detected, jam and then cease transmission
- 4. After jam, wait random time then start from step 1
- Attempt to transmit repeatedly if repeated collisions
- To ensure stability, IEEE 802.3 and Ethernet use binary exponential backoff
- With random backoff, unlikely to collide on next tries

Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits;

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - —heavy load: random wait will be longer
- first collision: choose K from {0,1}; delay is K x 512 bit transmission times
- after second collision: choose K from {0,1,2,3}...
- after ten or more collisions, choose K from {0,1,2,3,4,...,1023}

Collision Detection

- On baseband bus, collision produces much higher signal voltage than signal:
 - Collision detected if cable signal greater than single station signal
 - Signal attenuated over distance
 - Limited distances to 500m (10Base5) or 200m (10Base2)
- For twisted pair (star-topology) activity on more than one port is collision:
 - Special collision presence signal
- Different on wireless LAN's, since a receiver shut off while transmitting.

