

Data Encoding/Modulation Evaluation Factors	
•	Signal Spectrum
	 Lack of high frequencies reduces required bandwidth
	- Lack of dc component is desirable, i.e. it should be avoided
	 Concentrate power in the middle of the bandwidth
•	Clocking, i.e. synchronizing transmitter and receiver
	 External clock
	 Sync mechanism based on signal
•	Error detection
	 Can be built into signal encoding
•	Signal interference and noise immunity
	 Some codes are better than others
•	Cost and complexity
	 Higher signal rate (& thus data rate) lead to higher costs
	 Some codes require signal rate greater than data rate
	gbabic Presentation C 4

Phase Shift Keying
 Phase of carrier signal is shifted to represent data
Two-level (Binary) PSK
 Two phases represent two binary digits
Differential PSK
 Phase shifted relative to previous transmission rather than some reference signal
 Four-level (Quadrature) PSK - QPSK
 More efficient use by each signal element representing more than one bit
– e.g. shifts of $\pi/2$ (90°) and each element represents two bits
 In the presence of noise, bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK
gbabic Presentation C 20

Analog Data → Digital Signal

- Digitizing of analog data (e.g. voice) is conversion of analog data into digital data which can then be transmitted using some digital encoding (codec) or analog modulation.
- Pulse Code Modulation PCM used for voice encoding
- PCM is based on "Sampling Theorem":
 - If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all the information of the original signal
- Those are analog samples (Pulse Amplitude Modulation, PAM)
- Each sample is then assigned digital value by rounding or truncation
 - Quantizing error or noise introduced
- Approximations mean it is impossible to recover original exactly
 gbabic
 Presentation C
 23

DVD and High Quality Music
What does DVD acronym stand for?
– Digital Video Disc or
– Digital Versatile Disc
DVD disc capacity:
 Single side/single layer = 4.37Gbytes
• DVD–A (audio) characteristics (different from DVD–V (video)):
 – 6 channels (instead of 2 in stereo music))
- 24 bits per sample (instead of 16)
 – 96k samples per sec (instead of 44.1k)
- Max bit rate = $6 \times 24 \times 96 \times 10^3 = 13.824$ Mbps
 – DVD specification limits max rate to 9.6Mbps
– MLP (Merdian Lossless Packing) compression used, where
(uncompressed) PCM goes through an additional step
Super Audio CD (SACD): an alternative to DVD-A
HD DVD and Blue Ray disk with capacity over 20 Gbytes
gbabic Presentation C 26

