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Abstract

We present a method for the simultaneous detection and
segmentation of people from static images. The proposed
technique requires no manual segmentation during training,
and exploits top-down and bottom-up processing within a
single framework for both object localization and 2D shape
estimation. First, the coarse shape of the object is learned
from a simple training phase utilizing low-level edge fea-
tures. Motivated by the observation that most object cate-
gories have regular shapes and closed boundaries, relations
between these features are then exploited to derive mid-level
cues, such as continuity and closure. A novel Markov ran-
dom field defined on the edge features is presented that in-
tegrates the coarse shape information with our expectation
that objects are likely to have boundaries that are regu-
lar and closed. The algorithm is evaluated on pedestrian
datasets of varying difficulty, including a wide range of
camera viewpoints, and person orientations. Quantitative
results are presented for person detection and segmentation,
demonstrating the effectiveness of the proposed technique to
simultaneously address both these tasks.

1. Introduction

The ability of the human visual system to partition the
world into distinct objects plays a crucial role in enabling
us to successfully reason and interact with our environment.
Not surprisingly, the tasks of object detection and segmen-
tation have long been the subject of active research in the
field of computer vision.

An object category of specific interest to many applica-
tion consists of people in outdoor scenes. State-of-the-art
pedestrian detection algorithms typically provide informa-
tion regarding the location and scale of the detected person.
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However these approaches do not provide any information
regarding the shape of the detected object, a cue critical
for reasoning about most objects at a higher level. Espe-
cially when considering articulate entities such as people,
the shape of the silhouette holds rich information that has
proven to be useful in tasks such as action recognition, gait
analysis, 3D pose reconstruction, etc.

Obtaining the shape or silhouette of an object is typi-
cally viewed as a segmentation problem and several object
based segmentation techniques have been previously pro-
posed. However these techniques extract object shapes as-
suming that the object has already been detected in the im-
age, or, in other words, that the image region already con-
tains a single instance of the object.

In this paper we propose a method for the simultaneous
detection and segmentation of pedestrians from static im-
ages. The algorithm is capable of providing not only the
location, but also the silhouette shape of the detected pedes-
trians using only weakly labeled training data. The required
data is weakly labeled in the sense that, for each training
image, the presence or absence of the person is labeled, but
the person silhouette is not marked. Unlike other related ap-
proaches [7, 8, 6], our algorithm thus does not require any
form of manual segmentation during training.

The tasks of object detection and shape recovery have
been traditionally treated as distinct processes in computer
vision. Object detection approaches mostly work in a top-
down manner, while image segmentation methods predomi-
nantly use a bottom-up approach relying on lower-level cues
such as edge continuity and grouping. The proposed al-
gorithm aims to harmoniously integrate both top down and
bottom up processing in order to simultaneously recover the
location and shape of the target object. The role of low-level
local and global perceptual cues in organizing visual infor-
mation into percepts such as figure and ground has been
argued since the Gestalt psychologists. Based on the sim-
ple observation that most interesting object categories (e.g.,



people, vehicles) have regular shapes bounded by smooth
boundaries, we aim to seamlessly integrate these powerful
perceptual cues with top-down learning.

We first extract low-level contour-based features from
the input image (or image patch) and obtain a coarse es-
timate of the person shape from weakly labeled data. Then,
the relations between the contour features are exploited to
extract mid-level cues such as contour continuity (local) and
closure (global). We then employ a novel Markov Random
Field (MRF), defined over the contour features, to integrate
the priors expressed by the local and global mid-level cues
with the likelihoods obtained from probabilistic learning.

Though the proposed method is applicable to other ob-
ject categories, we restrict ourselves here to the task of
detecting and segmenting people in outdoor scenes. We
demonstrate our algorithm on three different datasets en-
compassing a wide range of different backgrounds, person
orientations, and camera viewpoints. We present a detailed
quantitative evaluation of the detection and segmentation
performance of our algorithm using the well established
MIT and INRIA pedestrian datasets.

2. Related Work

While numerous detection methods have been shown to
be effective at detecting people in outdoor scenes [9, 3],
here we briefly review only those methods that also pro-
vide the shape of the object. A template-based method for
pedestrian detection was proposed in [5] that provided some
shape information by matching the detected object with
the most similar template used during training. Template-
matching techniques, though, require large training sets
with completely segmented object regions. The implicit
shape model proposed in [7] addresses the tasks of de-
tection and segmentation using prototypical image patches
and their spatial distribution around the object centroid.
However, this class of techniques also requires fully seg-
mented object regions during training. In a related approach
[8], discriminative boundary fragments (instead of image
patches) were used to learn the object geometry. Another
approach using object boundaries was proposed in [12]. In
[6], an approach using a MRF defined over different ob-
ject parts was proposed for detection and segmentation.
These methods employ complex training schemes and re-
quire some form of manual segmentation during training
(object centroids in [8], complete shape in [12, 6]). Other
approaches that provide object shape can be categorized as
strictly object segmentation methods. For instance, work
such as [1] focus only on object segmentation, and discuss
neither object detection, nor how the method works when
the object is not present in the image. The approach de-
scribed in this paper is most similar to that presented in
[10]. While the algorithm in [10] primarily focuses on sil-
houette extraction, in this work we address both detection

Figure 1. Different processing stages. (a) Extracted contour fea-
tures (weighted by E,,.q4). (b) Candidate contour features. (c) Fi-
nal selected person contours. (d) Silhouette formed from selected
contours.

and segmentation, and present extensive evaluation of our
algorithm utilizing standard person datasets.

3. Contour Features

We begin by describing the features that we extract from
a given input image. We require features that capture the
rough shape of the object and also enable us to extract per-
ceptual cues that enforce the constraint that detected objects
must have regular, closed boundaries. We exploit first-order
gradient information by extracting edge-based features that
capture the orientation, location, and magnitude of local im-
age gradients, providing a simple representation to describe
object shape. As we will show (Sect. 5), these features also
enable us to derive useful perceptual cues.

We first find the edges in an image using the Canny edge
detector. From these edges, we extract short, nearly lin-
ear, contour fragments composed of connected pixels with
similar edge orientation. In order to ensure that the ex-
tracted contours are of reasonable size, the possible edge
orientations are quantized into a smaller number of bins.
We represent each contour fragment, c, by a feature vector
f = [p1,p2;, Emag). where p; and po are the two contour
endpoints and E,,,, denotes the mean gradient magnitude
along the contour. The feature vector f provides a com-
pact representation of the location, orientation, extent, and
magnitude of local edge information. The set of contour
features F' = {f1,... fn}, extracted from along the edges
of an object, forms a succinct representation that implicitly
captures the shape of the object.

We show examples of extracted contour features overlaid
on the input image (weighted by E,,,,) in Fig. 1(a) and
Fig. 2(b). Given all the contour features extracted from an
image region our goal is to identify those contour features
that belong to the object. We make use of both top-down
and bottom-up processing to achieve this goal.

4. Top-Down Processing

Object familiarity is a top-down cue that is often used
in the process of object detection. We exploit this cue by
employing a simple training scheme to estimate the rough



shape of the target object given only weakly labeled data.
The training data consists of cropped images divided into
two sets, a positive set containing instances of the target
object, and a larger negative set not containing the object.
No manual annotation in the form of segmented foreground
(object) pixels is required.

We first extract features, f, as described in Sect. 3, from
each cropped image in the training set.These features popu-
late a 5D space, where the dimensions represent the x and y
coordinates of contour end-points (p; and ps) and the edge
magnitude (E,,44). In this 5D space, we create probabil-
ity density functions (pdf) for the positive and negative fea-
tures using normalized histograms. Other density estima-
tion techniques could also be employed.

The modes of the positive pdf correspond to contour fea-
tures characteristic of the target object class as seen in the
training set. Given a new feature, the positive and negative
pdfs are used to provide a likelihood measure of the feature
belonging to the object or the background. Thus, using a
simple likelihood ratio test, each contour feature extracted
from a new image can be categorized as potentially belong-
ing to the object or the background. Due to the simplicity of
the learnining scheme, and the use of only weakly labeled
data, the contour features determined to belong to the object
at this stage are often not completely accurate. The selected
contours can potentially correspond to edges belonging to
background structure, leaving large portions of the object
boundary untouched. We show in Fig. 1(b) the candidate
contour features selected as belonging to the person for the
example shown in Fig. 1(a).

5. Bottom-Up Processing

We use the high level, top-down information in conjunc-
tion with lower level, bottom-up processing. We attempt to
exploit local and global perceptual cues such as continuity
and closure to capture our expectation that objects have a
natural structure with finite shapes and regular boundaries.

5.1. Contour Affinity

In order to capture the fact that objects have smooth
boundaries, we make use of contour “affinity”. Used in
several computational figure completion methods, affinity
measures how likely it is that two edge elements belong to
the same underlying edge structure. We adapt the notion
of affinity to deal with contours of finite size instead of the
dimension-less edge elements used in the literature [11].

Given two contours c¢; and co, consider the simplest
curve connecting an end-point of ¢; to an end-point of ¢y
as shown in Fig. 2(a). Based on [11], we define the affinity
for this curve joining c¢; and ¢y as

A = e(=r/or) L o(=B/ar) | o(=A/ce) (1)

Figure 2. Contour affinity (a) Affinity computation. (b) Extracted
contour features (weighted by edge magnitude). (c). Relative
affinity of marked (in circles) contour feature with other contours.

where r is distance between the end-points, and A =
|Etag — EZagl- The term 3 = 67 + 65 — 61 - 02, where
61, as shown in Fig. 2(a), denotes the angle between the
tangent vector at the end-point of ¢; and the line joining the
end-points of ¢; and co. The angle 65, formed at the end-
point of co, is analogous to #;. The normalization factors
or, 01, and o, are written as o, = R/wy, 0y = T /ws, and
o. = FE/ws, where R, T, and E equal the maximum possi-
ble value of r, 8, and A, and (w1, we, w3) are weights that
can be used to change the relative influence of each term in
the affinity calculation. Since c; and co have two end-points
each, there are four curves connecting the contours depend-
ing on which pair of end-points are connected. We define
the contour affinity, Aff{c1, ¢2), between contours ¢; and co
as the maximum affinity over the four possible curves.

We compute pairwise affinities between all the contour
features extracted from an image. Features lying in close
proximity along a common edge structure often align well
and have similar intensities, and hence obtain high affinity
values. In Fig. 2(c) we show the relative affinity values
between the marked (in circles) contour and the rest of the
contours extracted from the image shown in Fig. 2(b). The
figure clearly shows that in spite of the large number of con-
tours in close proximity, the neighboring contours along the
person boundary have the highest affinity.

5.2. Contour Closure

While contour affinity provides a local measure of conti-
nuity, an important global cue used in perceptual grouping
is closure. Objects of interest generally have a finite extent
bounded by a closed boundary. Using affinity as a measure
of similarity between contour features, we exploit this cue
by requiring that object contours form a closed loop.

In order to compute closure, similar to [4], we treat the
contour features as nodes in a weighted directed graph,
where the weights on the arcs correspond to the affinity be-
tween the nodes. We limit the out-degree of each node so
as to create a sparse graph. Considering each node in turn,
we compute the mean and standard-deviation of its affinity
values with every other node. We then preserve only those
arcs that have affinity values with a Mahalanobis distance



greater than a threshold. We use a threshold value 1 stan-
dard deviation for all the results reported here. The arcs of
the graph are then assigned weights equal to the negative log
of the affinity values (high affinity corresponds to low arc
weight). This enables us to find the most likely cycle pass-
ing through a pair of contours using standard and efficient
shortest-path graph algorithms (e.g., Dijkstra’s algorithm).

If a cycle C;; exists between a pair of contours, ¢; and
¢j, it is assigned a score, .S, equal to the product of the area
of the cycle and the affinity of the arc with the maximum
weight (minimum affinity) in the cycle. Thus, large cycles,
formed by chains of high affinity contour features, are as-
signed higher scores.

6. Cue Integration

We now turn our attention to the issue of effectively inte-
grating the top-down and bottom-up processes. While con-
sidering this problem, we note that the basis of our approach
is the application of contextual constraints to enable inter-
pretation of visual information. The contour features are
primitives extracted in the context of image pixels and gra-
dients. The notions of good continuity and closure are prim-
itives extracted in the context of contour features. And fi-
nally, the object is detected in the context of these features,
together with shape familiarty obtained from training data.

A method for modeling context dependent primitives,
and the relations between them, in a consistent manner is
provided by Markov random field theory. The MRF model
provides a framework to maximize objective functions like
the Maximum a posteriori (MAP) probability, where the
likelihood models the data characteristics and the prior de-
scribes preferences between different hypotheses.

Given a rectangular image region we begin by extracting
contour features F' = { f1, fa,... fn} from the input image,
and aim to obtain a segmentation by assigning each feature
a label from the set £ = {l,, l }, corresponding to the “ob-
ject” or “background” class.

Let B denote a configuration of labels such that {f; =
b1, foa = ba,... fn = by}, where b; € L. We formulate
the search for the optimal label configuration B as a max-
imum a posteriori (MAP) problem. If we assume that the
likelihood of a configuration of labels can be written as a
product of the individual likelihoods, the MAP estimate is
equivalent to minimizing the free energy [2]

E(B) = - Z log(p(filb:)) —log(p(B))  (2)

The first term corresponds to the likelihood of each con-
tour feature belonging to the positive (object) or the nega-
tive (background) class. These likelihoods are learned dur-
ing the training procedure, and capture the coarse shape of
the specific object category. The second term corresponds

to the prior probability of a shape, as defined by a given
configuration of contour labels. As described in Sect. 5.1
and 5.2, the object classes of interest have regular, smooth
shapes, and are bounded by a closed contour. In what fol-
lows we describe a MRF used to enforce these mid-level
cues, while minimizing Eqn. 2.

6.1. Structure and Neighborhood

We model the prior by employing a novel MRF defined
over the set of contour features. In order to establish a
neighborhood system for the MRF, we make use of contour
affinity (see Eqn. 1) as a distance measure. There are dif-
ferent methods that could potentially be used to determine
the neighborhood of an element. Two commonly used al-
ternatives are to either restrict the neighborhood to a fixed
number of elements, or to require all neighbors to be within
a fixed radius. These methods are effective in the typical
case, when the MRF is defined over a regular lattice such as
image pixels. Under such conditions it is straightforward to
determine the optimal size or radius of a neighborhood.

The proposed MRF is defined over an irregular, non-
uniform set of elements, and it is not feasible to employ
either method to establish a neighborhood system. We de-
termine the neighborhood of a contour feature in an adap-
tive manner, after examining its relation to all the other con-
tour features in the field. For each contour feature, c,, we
obtain the affinity value to all other features, and compute
the mean and standard deviation of these values. Then, in a
manner similar to as described in Sect. 5.2, the features hav-
ing affinity values greater than ¢ standard deviations from
the mean are included in Np, the neighborhood of c,,.

6.2. Clique Potential

Following  the = Hammersley-Clifford  theorem,
we define the probability of a configuration
p(B) o exp(—, Vi(B)), where Vj denotes the
clique potential defined over cliques k. We employ the

generalized Potts model to define pairwise clique potentials

Vip,a) (bps bg) = w(p,q) (1 — 0(bp — b)) 3

where p and ¢ are neighboring sites in the field, which in
our case denote contour features. The quantity u, 4 can
be considered to be the cost of assigning different labels to
p and ¢. In most applications, the MRF is defined over a
regular lattice (e.g., pixels) and the neighborhood of a site
is formed by its 4- or 8-connected neighbors. In such cases,
U(p,q) 18 often defined as a constant (well potential) giving a
homogeneous MRF with isotropic clique potentials.
However, in contrast to most previous applications, the
MREF described here is defined on contour features (not



arranged in a regular grid). Further, the MRF is non-
homogeneous, in that the clique potential across neighbor-
ing sites (contour features) depends on the properties of the
sites. Instead of defining radially symmetric clique poten-
tials, we wish to enforce a directional smoothness to the
label configuration, such that if a contour feature has a pos-
itive (object) label, neighboring contours are assigned the
same label only if they exhibit good continuity (high affin-
ity) and closure (belong to a closed chain of contours).

We first identify a set " of candidate contours that are
likely to belong to the object class using the thresholded
log-likelihood ratio

“)

fie F'. if In (p(fil°)>

p(filly)

Then, using the technique described in Sect. 5.2, we search
for cycles connecting pairs of contours taken from F”. As
we find cycles, C;;, connecting contour ¢; with other con-
tours ¢; in F’, we increment a pairwise interaction term,
Cyc(i, k), for all contours ¢, included in those cycles

S(Cij)

Cyc(i, k) = Cyc(i, k) + { 0 cr € Cyj

otherwise

®)

The value of Cyc(i, k) is normalized by the number of con-
tours in F’. Thus, a high value of Cyc(i, k) suggests that,
among cycles computed between contours in F”, many high
scoring cycles passed through ¢; and cg.

We combine both Aff and Cyc in order to define the
penalty term u, o) in Eqn. 3 as

cp € F
otherwise

Aff(p, q) - e~/ Cre(p:a))
u<p,q>—{ fp.0) - ¢ ©6)

Aff(p, q)

where o is a normalization constant. Thus, the cost of label
discontinuity is greater for contour pairs with high affinity
values. Furthermore, if a contour is in F”, this cost is greater
for those pairs that have a high affinity and are likely to
belong to a closed contour cycle.

6.3. Energy Minimization

As shown in [2], minimizing the energy function E(B)
in Eqn. 2 is equivalent to solving the mincut problem on an
appropriately constructed graph. Following [2], the graph is
composed of two types of vertices, the c-vertices (contour
features) and the l-vertices (labels, [, and ;). Among the
c-vertices, if ¢ is in the neighborhood of p, then p and ¢ are
connected by an arc with weight w, o) = 2u(, ). Each
c-vertex also has an incoming directed arc from [,, (source)
and an outgoing directed arc to [; (sink) with a weight

wh = (I(P(fl) + K)+ D wpg (D
qENp

where [ € £ and K is a constant ensuring that the weights
are positive. The min-cut of this graph ensures that each
contour feature is connected to only one of the 1-vertices,
l, or lp, and provides the required contour labeling. In Fig.
1(c) we show the final person contours determined by using
the proposed MRF for the image shown in Fig. 1(a).

7. Detection and Silhouette Generation

The labels assigned to the contours in an image region
directly provide us the means to classify the input image
region as containing the target object or not. Typically, if
the target object is not present, all the contour features are
assigned the label [;, (corresponding to the background) and
the classification of the image region follows trivially. How-
ever, depending on the structure in the scene, it is possible
that some sporadic background contour features are incor-
rectly assigned label [,,. Hence, in order to classify an image
patch as containing an object or not, we employ a simple
measure of the “coherence” of the contours labeled [,

Using the method described in Sect. 5.2, we search for
cycles formed by the positively labeled contours, and score
them based on the area enclosed by the cycle, and the min-
imum affinity arc in the cycle. This process does not im-
pose large computational overhead since the pairwise con-
tour affinities are already computed, and the graph is sparse,
consisting only of the positively labeled contours. We com-
pute the average of the best cycle score and the median pos-
itive likelihood of the object contours as the measure of co-
herence. The presence of the object is established by simply
comparing this coherence value against a threshold.

We have described here a only very simple (yet effective)
form of the coherence measure. Based on domain knowl-
edge and prior expectations about the target object shape,
several other factors could be incorporated into the compu-
tation of the coherence measure. Thus any falsely labeled
background contours can be easily eliminated by relying on
higher-level information, such as the shape characteristics
of the best contour cycle formed, or the orientation of the
axis of symmetry, etc. Traditional object detection schemes,
that merely classify image patches without providing a seg-
mentation of the object region, do not provide any such op-
portunity to reason about falsely detected image patches.

Computing the coherence measure also directly provides
the silhouette of the object. The end-points of the contours
belonging to the highest scoring cycle are simply joined us-
ing straight lines giving a complete, closed outline. This
outline is flood-filled to generate the final silhouette. In Fig.
1(d) we show the final silhouette formed using this method
from the selected person contours (shown in Fig. 1(c)).



Figure 3. Top row: Example results of person detection and segmentation from surveillance images. Bottom row: Close-up view of

silhouettes extracted from top row.

8. Experiments

We applied our algorithm for the detection and segmen-
tation of person silhouettes from images encompassing a
wide variety of different scenes and camera viewpoints.
Three different datasets were employed to evaluate the ef-
ficacy of the proposed method for the tasks of detection
and segmentation. The first consists of outdoor images of
walkways and intersections on a University campus taken
from typical roof-mounted surveillance cameras. The sec-
ond dataset we used is the MIT pedestrian dataset consist-
ing of front and back views of people in either standing or
walking poses. And finally, we also evaluate our algorithm
on the challenging INRIA person dataset, that consists of
people in city scenes in various poses and orientations.

We use the surveillance dataset to provide a visual, qual-
itative assessment of the capability of the algorithm to ac-
curately locate and segment people in outdoor scenes. In
Fig. 3 we show the output of our algorithm on images from
five different camera views. Marked in yellow are the per-
son silhouettes detected by our algorithm. The bottom row
of Fig. 3 shows a closer view of ten silhouettes extracted
from these images. These results were obtained by training
the algorithm on 2034 30 x 40 cropped person images and
5000 negative images cropped to the same size. No manual
marking of object regions or centroids was required. Im-
ages were scanned using a three-level image pyramid. From
the examples in Fig. 3 we see that the proposed method
is effective at recovering both person location and shape
without generating many false positives. The camera views
shown in Fig. 3 contain several instances of confusing non-
pedestrian objects like garbage cans and magazine stands.
Further, the views shown second and fifth from the left also
contain large image regions with significant amount of clut-
ter due to tree branches and bushes. However, the effective
combination of the top-down and bottom-up cues enables
the algorithm to be unaffected by these challenging condi-
tions. The second image in the figure shows an instance of
a false detection (top left portion of the image).

In order to further evaluate our method quantitatively

and to facilitate comparisons with other methods, we make
use of the well established MIT and INRIA person datasets.
While several approaches have used these datasets for per-
son detection, we aim to employ these datasets to extract
information regarding both person location and shape. The
MIT pedestrian database [9] consists of 1018 training and
400 test examples of 64 x 128 cropped images of people
in standing and walking poses against urban backgrounds.
The INRIA person dataset also contains 64 x 128 cropped
images of people, with 2478 images used for training and
1126 for testing (the number of images reported for both the
datasets include left-right reflections). The INRIA dataset
contains images of people in a wide variety of upright poses
in many different orientation. Contrary to the surveillance
dataset discussed earlier, both these datasets consist of im-
ages taken at eye-level (camera viewpoint parallel to the
ground plane). For negative examples, the INRIA dataset
consists of a collection of 1218 training and 453 testing im-
ages not containing people.

The respective positive contour likelihoods were learned
using the positive training images from the two datasets. In
order to obtain the negative contour likelihoods, a common
set of 12180 64 x 128 image patches were sampled from the
negative images provided in the INRIA dataset. The nega-
tive contour likelihoods computed from these image patches
were used both for the MIT and INRIA datastes. A Canny
edge detector was used to extract edges from all the training
images. In order to remove any end-effects, a 4 pixel bound-
ary was cropped from around the training images, reducing
the image size to 56 x 120. Contours were extracted from
the edges using an edge orientation bin size of 45 degrees.
Contour likelihoods were obtained using normalized his-
tograms. Different number of bins were experimented with
to examine the effect of quantization in both edge-intensity
and in the spatial dimensions. A fine quantization was ob-
tained by binning the y, z, and E,,,, dimensions into 30,
14, and 8 bins respectively (represented as {30, 14, 8}). Bin
numbers of {15,7,8} and {30, 14,2} were also employed
to examine benefits of fine quantization in either the spatial
or edge-magnitude dimensions alone.



To test our approach, we processed the positive test im-
ages from both datasets, and the 453 negative test images
from the INRIA dataset. The negative images were scanned
at three different resolutions, moving the detection window
across every alternate row with a window stride of 2 pixels.

8.1. Detection

We used a simple threshold on the coherence measure to
determine the presence or absence of a person within the
input image region. The effect of varying this threshold on
detection performance for the MIT and INRIA datasets is
shown in Fig. 4(a) and (b) respectively using Detector Error
Tradeoff (DET) curves (miss rate vs. False Positives Per
Window (FPPW)). Examining the curves for the different
bin sizes we see that the setting with the highest number of
bins (highest resolution) {30, 14, 8} yields better detection
results than the others.

Examining Fig. 4(a) we see that, on the MIT dataset, the
algorithm generates a miss rate of less than 0.2 at a FPPW
rate of 1 x 10~%. Perfect results (0 miss rate) are obtained
when the FPPW rate is around 1.7 x 10~*. Comparing the
curves in Fig. 4(a) and (b) we see that, for identical param-
eter settings, detection performance on the INRIA dataset
is lower than that obtained on the MIT dataset. This is ex-
pected since the INRIA dataset consists of people in various
poses and orientations against more cluttered scenes . From
Fig. 4(b) we see that, on the INRIA dataset, a FPPW rate of
1 x 10~* corresponds to a miss rate of approximately 0.3.
A at a slightly higher FPPW rate of 2 x 10~4, however, our
algorithm generates near perfect results.

In Fig. 4(b) we also show the DET curve obtained by the
HOG person detector [3] on the same dataset. Compared to
the HOG detector, the sharply dropping DET curves of our
algorithm show that the proposed method generates lower
miss rates at FPPW rates of 1.3 x 10~ and higher (less
than 8 false-positives per 320 x 240 image over a three-level
pyramid). Our approach also relies on a simpler training
procedure than the HOG detector. For the HOG detector, a
procedure similar to that used by our algorithm is utilized
to first train a preliminary detector. The results produced by
this detector are then used to generate a much larger aug-
mented training set. Further, as opposed to the SVM classi-
fier used in the HOG detector, our algorithm employs a sin-
gle threshold on the coherence measure for the purpose of
detection. Additionally, our algorithm not only detects peo-
ple, but also provides a segmentation of their silhouettes.

8.2. Segmentation

In order to quantify how well the person silhouettes are
delineated we compare the segmentation results with man-
ually marked silhouettes. We generated hand-drawn sil-
houettes for 200 images from the MIT dataset and 600

Number of bins | MIT INRIA
{15,7,8} 0.84 0.78
{30, 14, 2} 0.77 0.75
{30, 14, 8} 0.75 0.72

Table 1. F-measure values for person segmentation results.

images from the INRIA dataset. The images were sam-
pled randomly from the respective positive test images of
both datasets. We show examples of silhouettes generated
from the MIT and INRIA datasets in Fig. 5(a) and (b) re-
spectively. The top row of Fig. 5 shows the input image,
the middle row shows the silhouettes produced by the pro-
posed method and the bottom row shows the corresponding
ground truth images. We see from Fig. 5 that our method
generates reasonable silhouette shapes of people in various
poses against different backgrounds.

We compute the Precision and Recall of silhouettes gen-
erated by our algorithm in terms of the number of pix-
els overlapping with the manually marked silhouette. The
segmentation results for the three quantization settings are
summarized in Table 1 using F-measure values (harmonic
mean of Precision and Recall). We see from the table that
using a bin number setting of {15, 7,8} generates the best
segmentation results for both datasets.

8.3. Discussion

The results obtained on the MIT and INRIA datasets
demonstrate the ability of our algorithm to utilize compara-
tively small, weakly labeled datasets to simultaneously gen-
erate competitive detection and segmentation results. Com-
paring our algorithm to the HOG detector (see Fig.4(b)), we
see the benefit of employing low-level, perceptual cues. In-
corporating bottom-up cues into the detection process, en-
ables our algorithm to successfully label most image re-
gions not containing the object as background. This has the
effect of reducing the number of false positives generated,
and enables the use of a simple threshold (on the coherence
measure) to determine the final detection. While the detec-
tion results were similar on both datasets, the segmentation
performance was distinctly better on the MIT dataset. The
poorer performance on the INRIA dataset can be attributed
to the large pose variations included in the dataset, and the
presence of several images with weak edge structure.

9. Conclusion

We presented a method for the simultaneous detection
and segmentation of people from static images using only
weakly labeled data. The method integrates both bottom-up
and top-down processing in a coherent manner. We employ
low-level contour features and a simple training phase to
estimate the rough shape of the target object. Based on the
fundamental observation that the person shape has regular,



o
o

——————————————————————————
—e—[30, 14, 8]
—=—[30, 14, 2]
—>— [15,7, 8]

oS
e
o

14
=

o
w
&

o
w

Miss Rate
o
N
&

o
N

0.15

01 —=—-——d oA MR

0.05

2
False Posmves Per Window (FPPW) Y10

(a)

77777777777777777777777
! —e—[30,14,8]|!

045 — - - - - - A----\--\{\———--T------ —8—[30, 14, 2]}
| ——[15,7,8] |1

| - |
04fF------ q-----\- [ S B Hoe |
| |
L] L I E ) T E T T S ——
| |

' '
Lo T N N e I
l | |

' | i
025R-----—5G-—--—--—"Q--—-¥§-7------——~—----—
[ | |
[P —_—,,—,__, _,—_,—_—Y,_SS—S—"—"e—_"—_e_—_"_"S$S”$<~,.-ATP
AN | |

LR T e T e i
SNeeo o |
A e N R - — - ____1
0.1 . W N S T !
| |

0.05F - - ---- AT T RRT T i
| |

0 I 5 ]
0 05 2 25
False Posmves Per Window (FPPW) x10™

Figure 4. DET plots for person detection results (a) MIT dataset. (b) INRIA dataset.

Figure 5. Examples of segmented silhouette regions from (a) MIT dataset, and (b) INRIA dataset. Top row: Input image.
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Middle row:

Extracted person silhouette. Bottom row: Manually marked silhouettes (ground-truth).

closed boundaries, we then make use of the relationships
between the contour features to extract mid-level cues such
as contour continuity and closure. An MRF defined over
the contour features is then used to integrate these different
sources of information to obtain a final contour labeling. We
evaluated our method on three different datasets of varying
difficulty, encompassing a wide variety of backgrounds and
camera viewpoints. Quantitative analysis of detection and
segmentation results demonstrate the ability of the approach
to effectively perform both tasks simultaneously. In the fu-
ture, we plan on exploring stronger models of top-down pro-
cessing in order to further improve detection performance.
We also plan on exploring the incorporation of motion in-
formation into our framework.
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