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Abstract In current video surveillance systems,
commercial pan/tilt/zoom (PTZ) cameras typically
provide naive (or no) automatic scanning functional-
ity to move a camera across its complete viewable field.
However, the lack of scene-specific information inher-
ently handicaps these scanning algorithms. We address
this issue by automatically building an adaptive, focus-
of-attention, scene-specific model using standard PTZ
camera hardware. The adaptive model is constructed
by first detecting local human activity (i.e., any trans-
lating object with a specific temporal signature) at dis-
crete locations across a PTZ camera’s entire viewable
field. The temporal signature of translating objects is
extracted using motion history images (MHIs) and an
original, efficient algorithm based on an iterative can-
didacy-classification-reduction process to separate the
target motion from noise. The target motion at each
location is then quantified and employed in the construc-
tion of a global activity map for the camera. We addi-
tionally present four new camera scanning algorithms
which exploit this activity map to maximize a PTZ cam-
era’s opportunity of observing human activity within
the camera’s overall field of view. We expect that these
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1 Introduction

In the area of security and surveillance, many types of
sensors (e.g., video, acoustic, seismic) exist to provide
information about the current state of the world. In par-
ticular, video cameras perhaps provide the most rich and
useful information as compared with other sensor tech-
nologies. This richness of information accounts for the
pervasiveness of video cameras within our society. Video
cameras are employed everywhere for monitoring traffic
flow, overseeing border control, providing indoor secu-
rity, and enhancing outdoor surveillance.

In security surveillance specifically, there exists a large
population of video surveillance cameras which pro-
vide pan/tilt/zoom (PTZ) functionality. The need for
high coverage with low cost makes PTZ cameras an
ideal, flexible solution, for this application. Surveillance
coverage, nevertheless, is still difficult. In particular,
indoor and urban environments are difficult from a cov-
erage perspective where scene structure (e.g., build-
ings, trees) can limit camera coverage. Some solutions
employ master–slave camera systems or omnidirectional
cameras to combat coverage issues. However, most com-
mercial surveillance systems currently consist of individ-
ual PTZ cameras. As a result, in this work we focus on
enhancing current functionality for single PTZ cameras.
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In addition, master–slave camera solutions necessarily
increase the number of video streams (for master–slave
systems) or have reduced functionality (no zoom for
omnidirectional cameras). Increasing the number of
cameras is not an appropriate solution because, in sur-
veillance, the number of observable video streams is
often already greater than the attention capacity of sur-
veillance staff. This attention bottleneck changes the
nature of surveillance from an anticipating, proactive
agency to a reactive process plagued by surprise. In addi-
tion, the elimination of zoom capability directly effects
surveillance staff which typically use the capability to
obtain multiple views of regions of interest to gain the
maximum quantum of information possible (e.g., a wide
view for scene structure and current surrounding activ-
ity, a narrow view for faces and license plate numbers).
Our approach attempts to reduce the attention bottle-
neck (introduced by large numbers of video streams)
and is designed for use with standard PTZ camera sys-
tems in both new and pre-existing security surveillance
installations.

In order to reduce human attention demands
without eliminating functionality, many PTZ camera
systems provide basic or naive automatic scanning tech-
nology, which sends each camera on a repeated pre-
defined path. Example scan mechanisms may include,
Continuous Pan, Frame Scan, Random Scan, and
Recorded Path Scan (see Table 1). This technology
attempts to relieve attention demands by reducing the
need for human–camera interaction; this is a useful

Table 1 Current automatic camera scanning technology from
Pelco [25]

Automatic Description
scanning
technology

Continuous Camera pans clockwise continuously at a user
Pan determined rate (deg/s). The tilt position

is constant and is determined by the current
tilt position when the option is initiated.

Frame Camera pans clockwise one frame (i.e., the
Scan number of degrees in the current field of view),

pauses for a user determined time, and then
repeats. The tilt position is constant and is
determined by the current tilt position when
the option is initiated.

Random Camera pans in a random direction for a
Scan random number of degrees, pauses for a random

quantity of time and then repeats; the tilt
position is constant and is determined by the
current tilt position when the option is initiated.

Recorded A user recorded path scan is stored in memory.
Path Scan The camera runs the scan path exactly

as recorded and then repeats.

direction in the ideal case of cameras with a large,
uniform interest, coverage area (e.g., a parking lot).
Although in more complex environments, these generic
algorithms typically result in sub-optimal scanning of
the space due to camera position (e.g., mounted on
pole, building roof, underneath overpass), obstructing
scene structure (e.g., buildings, trees), or non-uniform
user interest across a scene (e.g., high security areas vs.
low profile areas). Each of these factors reduces user
attention due to the mis-sampling of the complete scene
(i.e., higher than desired sampling of low interest areas
and lower than desired sampling of high interest areas).
In our discussions with security staff, this forces person-
nel to adapt in unpredictable ways (e.g., turn the func-
tionality off, sample the video stream less frequently)
to overcome the hobbling effects of these algorithms,
even though these methods were designed to “help”
personnel.

In this work we develop a more scene-specific, adap-
tive, focus-of-attention camera navigation model for
video surveillance by automatically learning locations of
high activity and directing the camera to sample these
areas more frequently. The algorithm detects targets
from a single motion history image (MHI) [3] at each
local view from the full viewable field of a PTZ cam-
era. This information is then accumulated over time
at each local view to create a scene-specific model of
interest (activity map). We also present several new
scanning algorithms which take advantage of this activ-
ity map to efficiently navigate a PTZ camera around
its entire viewable field, maximizing the opportunity
for observing human activity based on prior observa-
tions. This naturally eliminates the issues associated with
the aforementioned current scanning technology (i.e.,
uniform sampling across an entire scene containing a
non-uniform distribution of human interest). Currently,
our system does not consider multiple zoom factors;
however, the work presented here naturally extends to
multiple scales and is discussed in Sect. 7.

We begin with a review of computational aspects
related to our approach, including human activity detec-
tion/recognition, outdoor scene modeling, and focus-
of-attention models for surveillance (Sect. 2). We then
present an overview of our approach (Sect. 3). Next,
we provide a detailed description of our algorithm for
measuring human activity using a iterative candidacy-
classification-reduction technique for MHIs, which is
then accumulated over time into a single activity map
(Sect. 4). Next, we describe possible applications of
the activity map to new camera scan path navigation
methods (Sect. 5). We then provide experimental results
for the detection (candidacy-classification-reduction
approach), the resulting activity map, and a performance
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evaluation of the camera navigation algorithms (Sect. 6).
Then, we discuss limitations of the current activity map
and possible extensions (Sect. 7). Lastly, we provide a
summary and comment on future directions of the work
(Sect. 8).

2 Related work

Our work spans several areas of computer and machine
vision including human detection/activity recognition,
scene modeling, and scene scanning as focus-of-atten-
tion. We briefly examine related work in each of these
areas and conclude with a comparison to our proposed
approach.

2.1 Human activity detection and recognition

In this work we define human activity as any human
generated motion (e.g., walking pedestrian, biking
pedestrian, moving vehicle). In particular, we detect
human activity by recognizing characteristic translating
motion patterns. In general, however, human activity
can range from basic presence in a scene to specific
actions (e.g., person walking or entering a building).

Many techniques exist for blob-based person detec-
tion and most rely on a background model of simpler
or greater complexity. Methods employing background
subtraction include a single or multi-modal Gaussian
background model [28,32], a two-stage color and gradi-
ent method [14], a Markov Chain Monte Carlo method
[34], and a contour saliency map (CSM) approach which
combines a standard background subtraction with a
contour completion algorithm [10]. Alternatively, detec-
tion techniques can take advantage of motion or tempo-
ral change. Specifically, temporal differencing has been
used by [16] to classify objects as either humans or cars
using dispersedness and area features. More recently,
work by [33] uses MHIs forward and backward in time
simultaneously to extract object silhouettes for each
frame. Lastly, template-based methods are another well
explored and popular area, and includes techniques such
as AdaBoost, where an ensemble classifier is created
using rectangular filters on intensity and difference
images to extract pedestrians [30] and further studied
by [9] to automatically learn the optimal ensemble of
filters. In [6], histogram of oriented gradient (HOG)
templates are used for pedestrian detection. Futher-
more, pedestrian detection can be accomplished using
coarse-to-fine matching of edge templates [12], or using
wavelets in combination with support vector machines
(SVM) to learn characteristic pedestrian templates for
detection [24].

Beyond mere person detection, the domain of
human activity recognition includes a broad range of
approaches, which are succinctly described in [1,4,11,
31]. Specific categories of approaches for activity rec-
ognition include, frequency-based Fourier analysis [17],
temporal differencing (object and temporal classifica-
tion) [16], feature-based properties (e.g., stride) [7], spa-
tio-temporal patterns [22], spatio-temporal templates
from image sequences [2,18], and Hidden Markov Mod-
els (HMMs) [5]. All of these activity recognition tech-
niques exploit temporal information to identify catego-
ries of human motion.

2.2 Scene analysis and modeling

Current scene modeling and analysis techniques can be
split into two distinct categories. The first category per-
forms scene segmentation using scene structure based
on user-defined rules (e.g., [29]), or use additional knowl-
edge gained through user-assisted classification of exam-
ples based on information such as, color, texture, and
patterns (e.g., [20]). The second category uses seman-
tic-based information, such as pedestrian entry points,
pedestrian exit points, and pedestrian pathways, by
tracking pedestrians and clustering resulting trajecto-
ries, start positions, and end positions [15,19,28]. All of
these models extract high-level scene information using
scene properties (e.g., structure or human pathways).

2.3 Scene scanning as focus-of-attention

As discussed previously, current PTZ cameras provide
a dramatic increase in functionality, which raises a fun-
damental issue. If a camera is directable over a large
viewable field but has a small observable window (i.e.,
can monitor only one of many locations at a time), where
should the camera look? This question is addressed by
recent work in scene scanning, using focus-of-attention
as a model. These systems utilize two cameras simulta-
neously (master–slave camera systems) to provide sur-
veillance personnel a focus and a surround. The focus,
or “slave” view, in most systems is implemented with
a PTZ camera which is able to acquire a close-up view
of a location designated by the “master,” or overview
camera with a large fixed field of view. Current systems
implement the master camera, which provides the sur-
round view, with either a very large field of view static
camera [35] or an omnidirectional camera [23].

2.4 Relations to proposed approach

Our proposed approach creates a global scene model
for a single PTZ camera by dynamically measuring local
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Fig. 1 Conceptual
local/global overview

human activity using MHIs to build a single activity map,
which is then used as an input to a set of automatic
camera navigation algorithms.

The proposed approach differs from previous work to
address person/activity detection shortcomings related
to noise sensitivity, background modeling, and specific
templates. However, other work related to human activ-
ity detection/recognition, as described earlier, could be
employed in our framework. Further, current scene
modeling methods typically require some form of user
interaction. This is not necessary with our system,
although user interaction is possible. Finally, focus-of-
attention systems typically require multiple cameras that
increases cost and may demand more user attention. Our
approach uses only a single camera.

3 Algorithm overview

Our complete algorithm is composed of two distinct
modules, which are a local/global detection algorithm
and an activity-based navigation algorithm, as shown in
Figs. 1 and 2, respectively.

The detection algorithm shown in Fig. 1 begins by cap-
turing a short sequence of images from a single pan/tilt
camera position and generating an MHI. Then, using
connected components, we separate the MHI into indi-
vidual blobs, which are analyzed independently using an

iterative process. The process begins by validating each
blob for candidacy as a target translating object (i.e.,
must have minimum spatial size and temporal length).
All blobs that fail candidacy are immediately removed
from the MHI. If, however, a blob qualifies as a candi-
date, the blob is passed to the classification stage where
it is evaluated for translating motion. An MHI blob clas-
sified as translating motion is added to the final segmen-
tation image for the image sequence. If instead the MHI
blob is classified as noise, then the MHI blob is passed
on to a reduction stage, which removes those pixels least
likely to compose translating object motion. The reduc-
tion stage is necessary as misclassification can stem from
the connection of a valid translating object region with
a noise region. The reduction operation partitions the
blob based on MHI gradient magnitude (measures the
rate of temporal change between neighboring pixels),
resulting in either a single MHI blob or multiple MHI
blobs of smaller size. In either case, any remaining MHI
blobs are passed back to the candidacy stage where the
process repeats. This candidacy–classification–reduction
iteration continues on a blob until the blob is either
classified as translating motion (and added to the final
segmentation image) or is removed by the candidacy
stage. The local algorithm is complete when all MHI
blobs are classified as translating motion or removed. A
single activity measurement (summation of motion pix-
els) is then computed on the final segmentation image.
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Fig. 2 Conceptual
navigation overview
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The detection process and resulting activity measure-
ments are collected at each location across the entire
view space to create a global activity map. The activity
map is populated with activity measurements by visiting
each discrete pan/tilt location in a random order and
performing the local detection algorithm. The activity
map is then refined using several passes of the scene.

The navigation algorithm incorporates the informa-
tion from the constructed activity map to direct the focus
of the camera through the scene. A generic navigation
algorithm is depicted in Fig. 2 and begins with selecting
an initial starting location and moving to this position.
Next, we select a new location to move the camera.
Here, the selection is guided by the particular scanning
algorithm (we provide several approaches later) and the
activity map. Depending on the algorithm, an “optimal”
path to the new location is also selected based on the
underlying activity map. Both the target location and
path are stored in a history buffer to prevent the cam-
era from moving back to the same location too quickly
(we quantify this later for comparison of the different
navigation methods). The algorithm then selects a new
location and the above process repeats.

4 Measuring human activity

In order to measure human activity at a fixed camera
position (i.e., pan/tilt, currently at a fixed zoom), we
employ a series of steps to extract translating object
regions in a single MHI. In Sect. 4.1, we introduce cat-
egories of motion within MHIs. We then describe the
algorithm for detecting the human activity category,
beginning with capturing a sequence of frames and gen-
erating the MHI (Sect. 4.2). Following this we extract
individual blob regions and examine them for candi-
dacy (Sect. 4.3). Next, we use the MHI representation

to classify all regions as translating objects or noise
(Sect. 4.4). Due to the possible connection of translat-
ing object motion and noise, we incorporate a reduc-
tion step, which separates translating object motion from
noise (Sect. 4.5). The result from the reduction step is
then returned to the candidacy stage for re-evaluation.
This process continues until all MHI pixels are classified
as belonging to a translating object or removed. The
final segmentation image is then quantified into a single
activity measurement. The local activity measurements
at different locations are then used to form a global
activity map (Sect. 4.6).

4.1 Categories of motion

Examination of MHIs from a commercial PTZ video
surveillance camera tend to show three distinct catego-
ries of MHI patterns or signatures. We label these gen-
eral categories as human activity, environmental noise,
and camera noise. Examples of each type of motion are
provided in Table 2. In our categorization we distinguish
environmental noise from camera noise; however, cam-
era noise is a consequence of interaction between the
camera sensor technology (CCD sensor), scene struc-
ture (spatial patterns), and transmission format (i.e.,
NTSC). Therefore, overlap can occur between environ-
mental and camera noise, although the two are concep-
tually separate and unique. For example, a tree shaking

Table 2 Examples of human activity, environmental noise, and
camera noise

Human activity Environmental noise Camera noise

Pedestrian walking Tree shaking Brick work
Person biking Smoke/steam Building edges
Moving vehicle Reflections Lamp posts
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Fig. 3 Timelapsed images and raw MHIs for classes of Human Activity. a Pedestrian, b cyclist, and c moving vehicle

due to wind is considered as environmental noise, and
differs from a still tree with NTSC edge aliasing (of
leaves and branches), which we consider as camera
noise.

Our algorithm attempts to separate human (or human
generated) activity from environmental and camera
noise. In typical surveillance videos, the target motion
usually corresponds to pedestrians, groups of pedestri-
ans, moving vehicles, cyclists, rollerbladers, skateboard-
ers, etc. In this work, we define human activity as any
translating object with a minimum spatial size and tem-
poral length. In Fig. 3 we provide a few examples of
such human activity using a timelapsed image and cor-
responding MHI. The MHI provides a compact motion
representation that visually captures the motion trail of
translating objects over time. Rather than using a spe-
cific activity detector (e.g., pedestrian templates), we feel
that an MHI-based approach can be simple and effective
at separating general human activity patterns from the
remaining noise categories. Certainly other color and
texture patterns could also be employed in conjunction
with the MHI to help identify the target regions, and this
additional information will be addressed in future work.
Currently, we examine the usefulness of a motion-based
representation. We reemphasize here that we are includ-
ing more pedestrians in our definition of human activity,
which is desirable and motivated from interviews and
discussions with security surveillance personnel.

4.2 Motion history image

An MHI is a single image which represents extended
temporal motion (>2 frames). Typically, an MHI uses
either background subtraction or temporal differencing
to extract frame-to-frame motion. In this work, tempo-
ral differencing is used to extract motion between subse-
quent temporal frames. An MHI is computed as follows.

Let Iseq = [I1(x, y)· · ·IN(x, y)] be an image sequence of
length N. Let Dseq = [D1(x, y)· · ·DN−1(x, y)] contain
the temporal differencing of Iseq, where

Dt(x, y) = It+1(x, y) − It(x, y) (1)

For RGB images, one could use pixel-wise Euclidian
distance. We then binarize the differencing result with

Bt(x, y) =
{

1 if |Dt(x, y)| > TDiff
0 otherwise

(2)

A low TDiff threshold is selected to increase sensitivity to
all possible motion, which, of course, results in a larger
quantity of included noise. The tradeoff of more noise
for higher sensitivity is offset by the recursive nature
of the algorithm to be discussed in Sect. 4.5. Combat-
ing increased noise is also assisted by removing regions
below a minimum size (TMinFrameSize) from each image
in Bt(x, y). In addition, to strengthen larger regions, we
perform a single close morphological operation to fill
the interior of all binary blobs in Bt(x, y). The binary
sequence is used to update the MHI for each timestep
(t) as follows:

MHI(x, y) =
{

t if Bt(x, y) == 1
MHI(x, y) otherwise

(3)

An example of a walking person is shown in Fig. 4a using
a time-lapse image (higher intensity is more recent in
time), with the corresponding MHI shown in Fig. 4b.
The long trail of the person in the MHI visually cap-
tures a basic property of translating objects. We refer to
this property as “temporal consistency”, in that, a trans-
lating object within an MHI will have a trail consisting
of an intensity fade of extended temporal length. Fur-
thermore, an intensity fade for a semi-rigid, constant
velocity, translating object will have equal quantities
of all MHI timestamps. In addition, we conjecture that
non-translating objects, or noise, will not exhibit strong
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Fig. 4 Example MHI. a
Time-lapse image and b MHI
of a person walking across a
scene

temporal consistency, given the nature of noise sources
(generally static). We therefore, use temporal consis-
tency to classify each MHI blob as a translating object
or noise. In the ideal case of a blob consisting of only a
translating object with minimal contributing noise (we
describe later how we manage significant noise contri-
bution), the classification process is as follows.

4.3 MHI candidacy

First, for each MHI blob, we determine whether the blob
is a potential candidate for human activity (i.e., translat-
ing motion). We define blob candidacy with two proper-
ties of temporal consistency previously discussed, which
are a minimum spatial size (i.e., size(MHI_blob) >

TSpatialSize, e.g., 400 pixels for a 320 × 240 image) and a
minimum temporal length (i.e., Duration(MHI_blob) >

TTemporalLength, e.g., 0.5 s). If an MHI blob fails either
of these two criteria then the blob is not considered
a candidate for human activity and is removed from
the MHI. These thresholds can be tightened or relaxed
depending on the application to identify more or less
temporally/spatially significant signatures, respectively.
All blobs that are selected as candidate human activity
are passed to the classification stage for evaluation of
translating motion.

4.4 MHI classification

In this stage, we examine the intensity fade of each MHI
blob (timestamp distribution). For classification, if we
assume that an MHI blob is indeed human activity (and
therefore is a valid translating object), then the resulting
MHI blob will have a trail of relatively equally spaced
(i.e., spatially and temporally) timestamps. For example,
consider the ideal case of a square moving left-to-right
across a scene with constant velocity. The histogram of
this ideal MHI blob would show equal quantities of each
timestamp in the blob (i.e., uniform distribution within
0 < t < N − 1). This timestamp distribution, however,
is dependent on the MHI blob size. Therefore, for com-
parison of temporal histograms of different blobs, we
normalize the histogram by the size of the MHI blob.

Classification of a candidate MHI blob (translating
vs. noise) is accomplished using a histogram similar-
ity measure to quantify the degree of match between
the candidate MHI blob timestamp distribution and the
ideal timestamp distribution (uniform) for that blob.
The resulting similarity measure must be greater than
a threshold value THumanActivity, for the MHI blob to
be classified as human activity. We provide experiments
later examining several different similarity measures
and thresholds (Sect. 6.1).

The previous candidacy and classification approaches
are designed for classifying MHIs in the presence of min-
imal noise. In actuality, however, MHIs are more com-
plex than this idealized situation due to the presence
and overlap of environmental noise (e.g., shaking trees,
illumination changes) and camera noise (e.g., spatial fre-
quency aliasing). These noise sources, when attached to
the MHI intensity fade of a true translating object, will
cause the classification algorithm to fail (i.e., classify as
noise).

In Fig. 5 we provide a synthetic example of three
possible classes of MHI blobs which are, (a) translating
activity only, (b) noise only, and (c) an overlap of noise
and translating activity. Using the classification tech-
nique previously described, the blob in Fig. 5a would be
classified as translating activity (uniform distribution),
while Fig. 5b, c would be classified as noise (not similar
to a uniform distribution). Notice that Fig. 5b would be
classified correctly as noise; however part Fig. 5c in some
sense would be classified both correctly and incorrectly
due to the presence of a large noise region. Unfortu-
nately, classifying this MHI blob as noise and removing
all of the blob pixels would eliminate the translating
object. We need to remove the noise region to suc-
cessfully detect the translating object. In Fig. 5d, we
present the ideal extraction of the translating activity
from Fig. 5c. The histogram of the segmented translat-
ing activity (Fig. 5d), is more similar to the histogram in
(a) than in either (b) or (c), although is still not ideal due
to the shape and overlap of the noise region. However,
this may be handled by the classifier with an appropriate
threshold. We therefore need a method to separate the
blob into noise and translating object, from which we
can then detect the translating object.



48 J. W. Davis et al.

0 5 10 15 20 25 0 5 10 15 20 25
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 5 10 15 20 25
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 5 10 15 20 25
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

(a) (b) (c) (d)

Fig. 5 Examples of MHI classification for a translating object, b non-translating object (i.e., noise), c combination of translating object
and noise, and d translating object after reduction. Top image is the MHI and bottom image is the timestamp histogram

4.5 MHI reduction

This section is motivated, as stated previously, by the
possibility of a candidate MHI blob simultaneously con-
sisting of human activity and noise, resulting in the mis-
classification of the entire region as noise. We cannot,
however, know a priori that an MHI blob classified
as noise contains human activity or not and therefore
we assume that all noise MHI blobs potentially contain
human activity. Consequently, all noise MHI blobs are
processed by this stage of the algorithm in an attempt to
reduce all MHI blobs to human activity.

When human activity and noise regions are connec-
ted, and therefore are contained in a single MHI blob, we
must find a method to segment the single region in such
a way as to separate the noise from the human activity.
With this goal in mind, we use the gradient magnitude
image of the MHI blob (similar to the approach in [3]).
The MHI gradient magnitudes can be used to identify
areas of large temporal disparity between neighboring
pixels, which is precisely what we expect to see at bound-
aries of objects and within noise regions. The gradient
magnitudes provide a means to consistently remove pix-
els in order of confidence related to translating object-
ness and are the basis for our MHI reduction algorithm.
Note that currently only the gradient magnitude (not
direction) information is used.

For a single MHI, the gradient image is constructed by
convolving Sobel masks (Fig. 6) with the MHI to obtain
the Fx and Fy gradient images. The resulting gradient

magnitude image is defined as
√

F2
x + F2

y . Several issues

may exist with this initial gradient magnitude image after
these simple steps, and may include invalid gradient
magnitudes at blob-background boundaries and zero

(a) (b)

Fig. 6 Sobel masks. a X-direction, b Y-direction

gradients within large regions of uniform timestamp.
We first remove gradients larger than a threshold value
TMaxGrad (e.g., gradient magnitudes > 0.5 s). These large
gradient pixels correspond to blob-background bound-
ary pixels and some noise pixels. These pixels are
removed from both the gradient image and MHI. We
then eliminate the most current timestamp pixels from
the gradient magnitude image and MHI, because these
pixels do not form part of the MHI intensity fade. Finally,
the zero gradient magnitude pixels (within regions of
the same non-zero timestamp) are filled in using the fol-
lowing process. Each zero gradient magnitude pixel is
assigned the average gradient value of the 8-connected
neighbors having a gradient magnitude >0. Note, in
order for a pixel to be filled, the pixel must necessarily
have at least one non-zero gradient magnitude neigh-
bor. Initially, some pixels may have all zero gradient
magnitude neighbors and therefore we perform this pro-
cess iteratively until all possible zero gradient magnitude
blob pixels are assigned a non-zero value. Any zero gra-
dient magnitude pixels remaining after this operation
are removed from the MHI image.

The MHI reduction process uses the updated gradient
magnitude information computed by the above process.
In order to tightly control our reduction method, we
select the maximum gradient magnitude for the given
MHI blob and use this pixel as the seed/start pixel for
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Fig. 7 a Gradient magnitude image of translating square with noise region. b Histogram of gradient magnitudes with 10% threshold. c
Two regions resulting from reduction steps

the reduction process. From this seed pixel we recur-
sively grow out 8-connected from the seed pixel to all
other pixels in the gradient magnitude image with mag-
nitude greater than a growing threshold (Tgrow). We
take a conservative approach at each reduction step,
selecting a small Tgrow, based on a small percentage
(e.g., 10%) of the number of pixels in the current MHI
blob. We believe this will provide a more accurate reduc-
tion as a smaller Tgrow will result in a fewer number
of pixels selected at each reduction step, and accord-
ingly, finer resolution on the reduction. In Sect. 6.1, we
provide experimental results for different Tgrow values.
Once growing is complete, all pixels collected by the
growing operation are removed from the current MHI
blob. After applying a connected components algorithm,
there may be multiple MHI blobs. Each of the resulting
blobs is returned to the candidacy stage (Sect. 4.3) for
consideration as human activity. After the candidacy,
classification, and reduction stages complete, all blobs
are either classified as human activity or removed by the
candidacy test. The result is a final binary segmentation
image showing areas of human activity in the image.

To illustrate this process, we refer again to the ideal
example of a box translating from left-to-right across a
scene with an added noise region, as shown in Fig. 5c. In
Fig. 7a, we show the raw gradient magnitude image of
the MHI immediately after applying the gradient masks.
Notice that the higher gradient magnitudes (higher
intensity) reside within the noise region and on the
blob and noise boundaries. In particular, the object-
noise boundary is clearly visible in this image. After
removing the initial invalid gradients and filling miss-
ing gradients, we select the seed pixel (current maxi-
mum gradient pixel). In Fig. 7b, we show a histogram of
the gradient values and highlight the selected Tgrow for
this blob with a vertical dashed line. Finally, we show
in Fig. 7c an intermediate binary result in the reduction
process. This binary image shows the result immediately
after the reduction algorithm completely separates the
noise and translating object regions (after 10 reduction

iterations). As the iterative process (candidacy–classi-
fication–reduction) continues to execute, the circular
noise region is repeatedly classified as noise and returned
to the reduction stage where pixels are removed, sepa-
rating the region into many smaller subregions which
are finally removed from the MHI based on the can-
didacy stage. The separated translating object region
is returned to the candidacy stage and, with the correct
selection of threshold values, the region will be classified
as translating object and added to the final segmentation
image.

We lastly convert the final binary segmentation image
into a single activity measurement number to give a rela-
tive indication of the quantity of activity that occurred at
that particular location. Possible measurements include
counting the number of segmented blobs, counting the
number of pixels, or counting a scaled number of pix-
els based on depth of view. For our work we selected a
simple summation of pixels (total motion energy) due
to the difficulty of, segmenting overlapping blobs, blob
fragmentation due to noise/partial occlusion, and scaling
difficulty without knowledge of the ground plane.

4.6 Global activity map

We presented a method to capture a coarse measure-
ment of human activity at a single camera view by seg-
menting human activity (i.e., translating objects) from
noise using MHIs. In order to use this local information
for global camera navigation we must employ the local
activity measurement at a set of discrete camera posi-
tions. We create an “activity map” for a camera’s full
viewable field using the local activity measure at several
camera locations. In order to create this activity map, we
divide the full field into m×n, discrete pan/tilt locations,
which naturally results in an m × n rectilinear activity
map. Due to the PTZ camera and the rectilinear activity
map, as the tilt angle decreases from 0◦ (horizontal) to
−90◦ (vertical) the quantity of overlap between neigh-
boring pan positions increases. Larger overlap results in
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higher emphasis of these locations (−90◦). However, the
rectilinear activity map simplifies construction (and the
navigation algorithms in Sect. 5) and produces reason-
able results. Building the map consists of visiting each
location in the activity map in a random order, apply-
ing the activity detection algorithm at each location, and
accumulating the activity measures over time. An exam-
ple activity map is displayed in Fig. 8.

The time to complete one full pass of the activity map
is dependent upon several factors including, the number
of activity map locations, the digitization rate/duration
(i.e., length of the sequence), and the processing time
to segment the MHI. In our current implementation the
number of activity map locations is 119 (7×17), and each
video sequence (for each location) is collected at a rate
of 12 Hz for approximately 6 s (75 frames). The median
execution time to process a single activity map loca-
tion using the recursive MHI reduction method imple-
mented in Matlab running on a P4 2.8 GHz computer is
<1s (calculated from 59 test images).

Once the activity map is initially constructed for a
particular PTZ camera, we must consider updating the
activity map overtime. In general, the activity map can
be updated as often as desirable to capture the evolu-
tion of a given scene over time. Updating is an impor-
tant and complex issue involving both when and how
to include new activity information. For example, new
activity information can be collected and updated con-
tinuously, only at selected times, based upon the activity
measured, or using a combination of all of these. Cur-
rently, we collect data for one complete pass of the activ-
ity map and then update each location simultaneously
by simply adding in the new measurements to the pre-
vious measurements for each location. This process is
repeated over several hours/days. Additional consid-
erations exist for online updating of the activity map
during camera navigation. During automatic navigation,
activity map locations are visited based on activity level
which results in a disparity between number of visits

Fig. 8 A 7×17 activity map (rows correspond to tilt positions and
columns correspond to pan positions) after 10 complete passes of
the scene, where brighter areas correspond to locations with more
activity

for high versus low activity locations. This visitation dis-
parity will result in slow (or no) online updating of low
activity regions. In order to address this issue, modifica-
tion to the automatic navigation will be necessary to visit
low activity regions specifically for the purpose of online
updating of the activity map. Possible modifications to
the navigation include a periodic random jump to lower
activity locations, performing one complete pass of the
activity map at designated times, or selecting a maximum
temporal threshold before a location must be revisited.
The selection of how to continually update the map over
time is application- and context-specific and is the focus
of future work.

5 Activity-based camera navigation

In this section, we present several navigation methods
that can exploit the activity map to improve scanning
efficiency over a camera’s complete viewable field as
compared to current automatic scanning algorithms. For
each of the methods we describe the activity map inter-
pretation and the scanning procedure. The methods pre-
sented include probabilistic jump, probabilistic walk,
inhibited probabilistic walk, and reinforcement learn-
ing paths.

5.1 Probabilistic jump

For this navigation method the activity map is normal-
ized (activity map values sum to 1) and considered as a
pseudo-probability distribution. Each subsequent loca-
tion is selected using a probabilistic roulette wheel sam-
pling of the activity map. Notice that as the number of
random jumps (i.e., time) approaches infinity the per-
centage of samples at each location will converge to the
normalized activity map. We limit the scanning mem-
ory/history to only the previous location. In other words,
the probabilistic selection will not permit the algorithm
to jump to the same location two times in a row. This is
accomplished by probabilistically selecting a new loca-
tion until the location selected is not equal to the current
location. Once the next location is determined the cam-
era moves directly (and quickly) to this new location
and the algorithm repeats.

This navigation algorithm, converges to the activity
map and therefore provides the maximum likelihood
of observing human activity based on prior observa-
tion. However, this technique tends to be disorienting
to some human observers due to the quick, and possi-
bly distant,“jump” between consecutive locations. Elim-
inating the disorienting movement between consecutive
locations motivates the following navigation algorithms.



An adaptive focus-of-attention model for video surveillance and monitoring 51

5.2 Probabilistic walk

This navigation method is similar to the previous jump
method, except that the next location is selected prob-
abilistically based on the 8-connected neighborhood of
the current location. This implicitly creates a path
because the distance between a location and any neigh-
bor is a straight line of unit distance (i.e., activity map
resolution determines unit distance). Similar to proba-
bilistic jump, the history is limited to only the previous
location.

This navigation algorithm eliminates the quick
“jump” between consecutive positions making this algo-
rithm less disorienting to some human observers. One
significant issue for this algorithm, however, is the ten-
dency over short temporal windows to become stuck in
local maxima. Correcting the issue of becoming stuck in
local maxima motivates the following algorithm.

5.3 Inhibited probabilistic walk

The next navigation method is a variation of probabilis-
tic walk and uses an inhibition/suppression mechanism
to control the history. The approach was originally moti-
vated by the saliency/saccade modeling method of [13].
The approach maintains an implicit history of recently
visited locations using a spatio-temporal inhibition mask
to decrease, and slowly recover, the normalized activity
map values of the 5-connected neighbors in the oppo-
site direction of the next location chosen (see Fig. 9).
This inhibition mask forces the focus-of-attention away
from recently visited areas by modifying (i.e., lowering)
the probability of visiting these locations (i.e., reducing
the activity map values). The probabilities are increased
back to original values using an inverted exponential
decay function

Inhibit(t) = 1 − exp(−α ∗ (t − t0)) (4)

where t0 is the time the location was initially inhibited,
and α is the inhibition rate (e.g., α = 0.1). Note, other
functions can be used to create the suppression/recovery

Fig. 9 Example inhibit patterns when the direction the camera
moves is a horizontal, b vertical, c at an angle. Black represents
the activity map locations that are inhibited and white represents
locations that are not inhibited

such as linear and exponential; however, in our work we
found the inverted exponential decay gave encouraging
results.

This navigation technique eliminates the local max-
ima issue associated with the previous probabilistic walk
method. However, this technique requires selection of
the inhibition function and the parameter α which
directly affects the resulting navigation.

5.4 Reinforcement learning paths

A well-known machine learning robot navigation
method for determining “optimal paths” given rewards
received along possible paths is reinforcement learning.
The goal of reinforcement learning is to determine opti-
mal actions given a set of rewards to maximize cumula-
tive reward. Specifically, Q-learning [21] is an iterative
method for learning a function (Q) which provides the
optimal policy (i.e., the correct action at a given state)
when rewards and actions are deterministic. The func-
tion Q gives a single number which indicates the dis-
counted cumulative reward for all state-action pairs. In
the case of a single location with large reward (a goal
location), maximization of the function Q (i.e., selecting
the state-action pair with maximum Q value at all states)
will give the optimal path from any location to that goal
location. The Q function for learning the optimal action
at any state is given by

Q(s, a) = R(s) + γ max
a

Q(s′, a′) (5)

where Q(s, a) is the discounted cumulative reward for
state s and action a, given reward function R, and the
discounted (e.g., γ = 0.9) cumulative reward at the next
state Q(s′, a′). Additional details can be found in [21].

Our task of navigating a scene given an activity map
is a natural domain for Q-learning, where the activity
map is the reward function (R), the activity map loca-
tions are the states, and the move to any 8-connected
neighbor is the set of possible actions. We simply select
a set of M goal locations (G) based on a probabilistic
selection of locations from the activity map. Then, for
each goal location g ∈ G we have a separate reward
function Rg, which is the activity map modified to give g
extremely high reward (extremely high activity). Each
reward function Rg is then input in to the Q-learning
algorithm. The Q-learning algorithm consequently finds
the optimal path from each state s (pan/tilt locations in
the activity map) to each g ∈ G using Rg, which are then
stored and used for navigation.

Navigation of the scene consists of probabilistically
selecting m ≤ M goal locations based on the original
activity map values. The subset m is compared against
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the goal location history. If one or more goal locations
in m do not exist in the history then we randomly select
one of these. If however, all goal locations in m are in
the history, we select the “oldest” goal location in m
according to the history. Once a new goal location is
determined, the path is provided from the Q-learning
results (performed offline prior to navigation). The goal
location history is then updated with each goal location
that is visited along the path from the current location
to the new goal location.

This algorithm navigates the space using optimal
paths between goal locations. However, the goal loca-
tions must be selected and the algorithm must retrain
when the activity map is changed (training time can be
considerable).

6 Experiments

In this section we examine the performance of our algo-
rithms related to measuring local activity, generating
global activity maps, and applying our navigation tech-
niques with multiple cameras and varying views. In the
local activity section (Sect. 6.1) we describe and pro-
vide examples of the results for human activity extrac-
tion and provide experimentally determined threshold
values. Following this (Sect. 6.2), we examine global
activity maps generated from three different cameras.
Lastly (Sect. 6.3), the navigation techniques are com-
pared using paths generated by each algorithm.

The specific equipment used consists of three Pelco
Spectra III SE series dome cameras (see Fig. 10) [25]
mounted outdoors on three different buildings on the
main campus of Ohio State University. Two cameras
have overlapping views and one camera has a com-
pletely disparate view. Additionally, the cameras are
mounted at varying heights (two, three, and four sto-
ries). Images are captured with a Matrox Meteor frame-
grabber using RGB at a size of 320×240 pixels with a
frame rate of ∼ 12 fps. In Fig. 11a–c, we show spherical
panoramas of the three camera views, each created by
stitching together 119 separate local-view images, into a
single viewable field for each of the cameras.

6.1 Measuring local human activity

In Sect. 4, we presented our MHI-based approach for
segmenting translating motion from (noisy) scenes. The
main thresholds of interest are the classification thresh-
old (Tclass) and growing threshold (Tgrow) used for
reduction. In this section, we compare the performance
of different threshold values and similarity measures
using manually segmented MHI data.

Fig. 10 Pelco Spectra III SE series camera

Due to the dependent structure of our algorithm
(i.e., tightly coupled candidacy–classification–reduction
stages) for extracting human activity, we evaluate the
classification and growing thresholds together. The eval-
uation used a training set of 59 MHIs (generated from 59
different image sequences), each containing one or more
MHI blobs (noise and object). These training sequences
were collected across the three cameras, at different
times-of-day and days-of-week. Example time-lapsed
images (for display purposes only) are provided in the
left-most column of Fig. 12, followed by the raw MHIs in
column two. Note the different locations, orientations,
and field of view. Then, in column three, we show the
ground truth manual segmentations of each MHI.

In this work, we selected four histogram similarity
metrics to evaluate as candidates for the classifier. The
similarity measures selected were Bhattacharya
distance, Jeffrey divergence (i.e., the symmetric form
of Kullback–Leibler divergence), Minkowski-form dis-
tance, for Match distance (equivalent to Earth mover’s
distance for the class of 1D histograms [27]). For these
histogram similarity measures, H is the size-normalized
MHI blob timestamp distribution and K is the ideal MHI
blob timestamp distribution (uniform). The metrics are
defined as follows

DBhatta(H, K) =
∑

i

√
(hi)(ki) (6)

DJD(H, K) =
∑

i

hi log
hi

mi
+ ki log

ki

mi
(7)

DMink(H, K, L) =
(∑

i

|hi − ki|L
) 1

L

(8)

DMatch(H, K) =
∑

i

|ĥi − k̂i| (9)

where, mi = hi+ki
2 , ĥl = h1 + h2 + · · · + hl, and k̂l =

k1 + k2 + · · · + kl. We selected the L2 norm (L = 2) for
the Minkowski-form distance.
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Fig. 11 Spherical representations of a–c camera views, d–f activity maps, and g–i overlays

As discussed, we evaluated the classification and
reduction thresholds (Tclass, Tgrow) simultaneously over
a wide range of values. The value for Tclass was varied
over a range suitable for each similarity measure (e.g.,
0–1 for Bhattacharya Distance, 0–2 for Minkowski-form
distance). The value for Tgrow was varied over the range
of 4 – 18% of the MHI blob size.

For evaluation, precision/recall data was collected
for the segmentation results for each combination of
Tclass and Tgrow compared to the manually segmented
MHIs. The result of these experiments are summarized
in Fig. 13 using a plot of the precision versus recall for
each threshold combination. For all measures, except
for match distance which significantly underperforms,

the results are very similar. In order to accurately com-
pare these results, we use the F-measure (F) [26] (or
harmonic mean) of precision (P) and recall (R)

F = 2PR
P + R

(10)

The F-measure provides a single number for compar-
ison across all combinations of thresholds. The opti-
mal thresholds for each similarity metric are provided
in Table 3. An evaluation of this table concludes that
Bhattacharya distance and Jeffrey divergence are essen-
tially equivalent for our dataset (consistent with Fig. 13).
We selected the Bhattacharya distance since the opti-
mal Tgrow value was larger, meaning that more pixels
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Fig. 12 Training data examples

are selected at each reduction step, possibly resulting in
fewer iterations of the candidacy–classification–
reduction stages and likely shorter execution time. The
automatically segmented data (using the selected classi-
fication and growing thresholds) are shown in the right-
most column of Fig. 12. The results are very similar to
the manually segmented MHIs.

To further evaluate our algorithm, we collected 10
additional passes of the full scene for each camera (10×

119 MHIs) and computed the segmentations. In Figs. 14
and 15 we display a sample of successful and problematic
candidacy-classification-reduction results.

In the successful segmentation images of Fig. 14, there
is significant noise contribution in each of the cases, in
particular the image in Fig. 14d is almost completely
filled with noise from the surrounding building, tree,
and ground cover. For all six image sequences, however,
the final segmentation image includes none of these
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Fig. 13 Precision-recall curve for Bhattacharya distance, Jeffrey
divergence, Minkowski-form distance, and Match distance

Table 3 The optimal results for each similarity measure with
corresponding precision–recall range, F–measure, classification
threshold, and growing threshold

Similarity Precision-recall F-measure Tclass Tgrow
measure range

Bhattacharya distance 0.986–0.870 0.925 0.79 0.10
Jeffrey divergence 0.986–0.872 0.925 0.36 0.07
Minkowski-form 0.986–0.868 0.923 0.24 0.15
distance
Match distance 0.934–0.876 0.904 15.0 0.05

regions. Furthermore, in all of these sequences, valid
target objects exist within/between noise regions and
are often significantly corrupted by the noise. Although,
even with the large interaction between target objects
and noise, the final segmentation images are an accurate
reflection of the target objects in their respective scenes.
The final segmentation, however, often includes a small
number of non-target pixels due to the connection of
valid translating objects with minor noise and the nature
of our classification. For instance, in Fig. 14e the top
middle blob in the final segmentation is human motion;
however, the small lower portion is part human activity
and part noise. Perhaps the most encouraging result is
Fig. 14b, where a person is walking behind a tree in the
bottom of the image and is nearly completely occluded
for the entire length of the sequence. Adding even more
difficulty is the resulting noise from the tree leaves due
to shaking and edge aliasing. With all of these difficult
contributing factors, our algorithm accurately catches
two large regions where the person’s movement is unob-
structed, a promising result. A similar result is provided
in Fig. 14f in the upper-left corner of the sequence, where
a person is also walking behind a tree and our algorithm

correctly includes the unobstructed translating object
pixels. Also, notice the disparity of view angles, specifi-
cally, Fig. 14a and Fig. 14e, with a nearly top-down view,
versus Fig. 14c and Fig. 14d with a more oblique view.
Finally, these images show a large variation in depth of
view from near field in Fig. 14a and Fig. 14e to objects in
the far field in Fig. 14c and Fig. 14d. In these variations,
the algorithm robustly segments the translating motion.

The previous results are extremely encouraging; how-
ever, our algorithm does have difficulty in some cases
and we provide examples in Fig. 15. In Fig. 15a, the
combination of spatial aliasing from brick work and con-
crete block with the camera shaking happens to produce
a small region in the MHI with a timestamp distribution
similar to a translating object. In Fig. 15b, a glass window
provides a reflection of multiple people walking through
the scene below and is, as expected, captured by our
algorithm. The next image in Fig. 15c fails to capture a
person walking directly towards the camera (located in
the left-center of the scene) due to a small and broken
MHI trail (eliminated by the algorithm based on size).
Lastly, we present in Fig. 15d a detected region that is
part of the roof on which the camera is mounted. This
region is very close to the camera (3 ft.) and is highly
textured, and produces a small region with evenly dis-
tributed timestamps (as in Fig. 15a).

The overall segmentation results of the testing images
show the desired sensitivity to the differences between
translating objects and noise in MHIs. From the highly
varying data presented (view angle, scene complexity,
occlusion, and camera noise), we believe our algorithm
is a simple, yet robust, method for dynamically extract-
ing translating motion from a scene.

6.2 activity map construction

For evaluation of the global activity map, we separate
our analysis into three separate categories, spatial con-
sistency for a single camera, temporal consistency for a
single camera, and spatial consistency of multiple cam-
eras with overlapping views. The spatial consistency of
a single camera is evaluated qualitatively using a spher-
ical panorama of the camera view with an activity map
overlay. The temporal consistency is assessed using the
mean and standard deviation activity map images for
each camera, and also using the evolution of an activity
map for a single camera. Finally, spatial consistency of
two cameras viewing the same area is demonstrated.

The activity map experiments employ the same test-
ing data used in the previous experiments (10×119 seg-
mented MHIs for each camera). We evaluate the spatial
consistency of our activity maps with a visual inspection
of the corresponding high activity map areas with known
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Fig. 14 Examples of
successful MHI
segmentations for testing data

high-traffic areas. For visualization purposes we provide
spherical panoramas of the camera views and spherical
panorama activity map overlays for each of the cameras
in Fig. 11. The spherical panorama for each camera in
Fig. 11a–c shows the full viewable area for the camera

with walkways, roads, and buildings. The middle column
(Fig. 11d–f) shows the warped (spherical) activity map
for each camera where higher intensity corresponds to
more activity. We then blended the spherical panoramas
from Fig. 11a–c with the activity maps from Fig. 11d–f,
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Fig. 15 Examples of
problematic MHI
segmentations for testing data

which results in the overlays displayed in the right-most
column (Fig. 11g–i). Through inspection of the overlays,
several areas are worth noting. First, the building areas
are close to or completely black, meaning little to no
activity occurs at these locations. Specifically, for each
panorama the roof to which the camera is mounted is
completely removed, which is desired. Also, the walk-
ways and roadways in each scene are bright, indicat-
ing high activity areas. Several interesting features are
noticeable from these maps. For example, in Fig. 11(g)
the overlay shows the highest activity area which resides
close to a tree; however, manual inspection of the seg-
mentation results shows that this activity corresponded
to pedestrian motion at this location (valid motion).
Also for this overlay, although difficult to see, the large
rectangular patch of grass at 70 ◦ from vertical (clock-
wise) has nearly a zero activity value (this low-activity
region is easier to see from the corresponding spherical
activity map in the middle column of the same figure).
This result shows that our activity map is an accurate
representation of the translating objects in the scene,

as people typically walk around this area of grass. In
addition, in the overlay of Fig. 11i, we see a noticeable
intensity area on the windows of the building on the left.
In this instance, the side of the building is composed of
large glass panes which from the position and angle of
the camera reflect the ground well. This is exactly the
reason for this activity region, as reflections of walking
pedestrians are captured by the camera and naturally
pass as human activity. Also, to the right of this region
we see a dark area on the walkway. Closer examination
of the dataset found that little to no pedestrian activity
occurred in this area when the video sequences were
captured. The high semantic correlation between the
overall scene structure and the activity maps demon-
strates the robustness of the algorithm.

The temporal consistency of an activity map is eval-
uated by examining the mean and standard deviation
of the activity map for each camera and the temporal
evolution of an activity map for a single camera. Con-
sistency in this instance does not refer to similar values
at all instances in time at the same location, but instead,
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Fig. 16 For 10 total passes of
three separate outdoor
cameras we display an image
of the a mean and the b
standard deviation of the
activity map value at each
location

refers to the expected quantity of variation in activity at
a location based upon the average activity at that loca-
tion. In other words, high activity areas will see large
variation because a person or vehicle may or may not be
moving through the scene at a specific time. Similarly,
in areas of low activity (i.e., sides of building and roof-
tops) we expect little to no variation since human activity
rarely if ever occurs in these locations. As a result, the
mean and standard deviation values for each location
are expected to be directly proportional to the activity
map values.

In Fig. 16, we display the mean and standard devi-
ation values (scaled for display) for the activity maps

in Fig. 11 (using all 10 passes). These maps demon-
strate that high-activity areas have the expected high
variability in activity level at any given moment. In addi-
tion, low-activity areas have consistently low activity the
majority of the time. This could be used to provide a
measure of anticipation for expected activity at a loca-
tion. We also provide the evolution of an activity map
over 10 passes for a single camera in Fig. 17. The evo-
lution of the activity map at each time is the cumulative
sum of the new activity map with all previous activ-
ity maps (maps are normalized for display only). Here
we see that over time high-activity locations increase in
intensity and low activity areas remain at consistently

Fig. 17 Cumulative evolution at each timestep of the global activity map for a single camera
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Fig. 18 Paths for 20 camera
moves for four navigation
techniques. a Probabilistic
jump, b probabilistic walk, c
inhibited probabilistic walk,
and d reinforcement learning
paths (goal locations are 1, 3,
7, 17, and 20)

low activity. The result appears to stabilize to a fairly
consistent map which tends to vary slightly in the high
intensity area but rarely changes in the low activity areas.

Finally we examined activity maps created using two
separate cameras with significantly overlapping views.
For the activity map overlays in Fig. 11g, h, the maximum
activity for both cameras occurs on the roadway/
walkway in-between the two cameras. This is significant
because no two passes were collected simultaneously
for these cameras. In other words, independent of the
exact time-of-day and day-of-week, the activity map
converged to similar activity emphasis across the same
physical space but measured from a different position
(and time). This supports the validity of our local activity
measure, and the accuracy and precision of the resulting
global activity map. Hence, the activity map results indi-
cate that we do indeed capture an appropriate activity
model for the full viewable field of a single PTZ camera
and that the results are robust across both space and
time.

6.3 Navigation

We next compared the four activity-based navigation
techniques (probabilistic jump, probabilistic walk, inhib-
ited probabilistic walk, and reinforcement learning

paths) presented in Sect. 5. For inhibited probabilistic
walk, we set the inhibition rate α = 0.1, and for rein-
forcement learning paths the number of goal location
states was set to 9, which were selected probabilistically
from the activity map. We note here, that for all navi-
gation techniques, zero-valued locations in the activity
map are set to a value of 10% of the minimum non-zero
activity map value (i.e., all locations must be reachable).
We provide a comparison of the techniques as opposed
to a strict evaluation because the optimal technique will
depend on the application and context.

We provide a sample path of each navigation tech-
nique by overlaying the sample path on a spherical pano-
rama activity map blend (see Fig. 18). For each algorithm
we display 20 iterations (camera moves) about the scene,
and show the sampled activity map locations using disks
labeled in sequential order (to designate multiple sam-
ples on a location we shift the disks and labels). This pro-
vides a visual comparison of each navigation technique,
as well as showing the underlying physical space (walk-
ways, buildings). In addition, for the three “walking”
techniques we also provide a line indicating the path
between sequential locations.

The first navigation technique, probabilistic jump
(Fig. 18a), illustrates how the highest probability loca-
tions are sampled multiple times whereas the lower
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Fig. 19 Visualization of a
sample rate (brighter
corresponds to higher
sampling) and b mean time
between samples (brighter
means a longer time between
samplings) for each
navigation method (‘x’ means
the location was never
sampled by the algorithm)

activity areas are sampled less. The “jumping” however,
is usually not ideal for some human observers. The next
navigation method, probabilistic walk (Fig. 18b), tends
to stay in the local maxima around a single high activ-
ity area. However, the algorithm, as desired, moves in a
manner more suitable for human observation and avoids
low activity areas. The next navigation technique, inhib-
ited probabilistic walk (Fig. 18c), is intended to elimi-
nate the problem of becoming stuck in local maxima, as
it tends to move away from recently sampled locations.
Most notably, the patch of grass in this panorama overlay
(discussed previously) is avoided. The algorithm walks
around this low-activity area (locations 1–9) to remain
in higher activity locations. Finally, the reinforcement
learning paths (Fig. 18d) move between 5 of the 9 goal
locations along paths of maximum reward. By design,
these paths avoid low-activity areas and move along
areas of high reward. Similar to the result for inhibited
probabilistic walk, this method also avoids the low-activ-
ity grass patch.

First, we compared the experimental sample rate (i.e.,
the number of times a location is visited over a set
number of camera moves, #samples

time ) of each navigation
technique with the original input activity map. Opti-
mally, the sample rate for a technique will match exactly
the activity map values (i.e., higher sampling of higher

activity locations). Next, we compared the mean time
between samples (i.e., the average time or number of
steps between two consecutive visits of a location) for
each navigation method with the activity map value.
The mean time between samples for all locations should
vary inversely with the activity map values (i.e., higher
activity locations should have shorter time between con-
secutive visits). Lastly, we provide a qualitative compar-
ison of properties and limitations for all four navigation
techniques.

To quantitatively compare the navigation techniques,
we employed the final activity map shown in Fig. 17
(for the camera displayed in Fig. 11a). Each navigation
method performed one million camera moves (to the
next location) in the activity map, where at each iter-
ation the time and location is recorded. The resulting
data was analyzed to determine how well each naviga-
tion technique mimics the input activity map in terms of
sample rate and mean time between samples.

In Fig. 19(a), we provide a visual comparison of the
sample rates for a single activity map for each navi-
gation technique. In order to compare the results, we
computed the similarity between the sample rates (nor-
malized) with the input activity map (normalized) using
the Bhattacharya distance. The results are shown in
Table 4. Immediately apparent, and expected, is the
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Table 4 Similarity of sample rate versus activity map value using
Bhattacharya distance

Navigation method Similarity value

Probabilistic jump 1.00
Probabilistic walk 0.97
Inhibited random walk 0.95
Reinforcement learning paths 0.81

result for probabilistic jump which matches exactly with
the original activity map. This is a direct consequence
of the probabilistic sampling of the activity map with
no spatial or temporal restriction on the next location
selected (except for no temporally consecutive sampling
of the same location). Also expected is the performance
of the reinforcement learning paths navigation method
which is least similar compared to the original activ-
ity map. The reason for this is the limited number of
goals (9) and pre-defined paths from all locations to all
goal locations, resulting in a large number of unsam-
pled activity map locations (see Fig. 19a). This could be
improved by increasing the number of goal states (but at
large training cost) or by adding a periodic random jump.
The two remaining navigation methods, probabilistic
walk and inhibited probabilistic walk, fall in between
these two extremes with probabilistic walk appearing
more similar to the original activity map than inhibited
probabilistic walk. This result is a consequence of the
inhibition which essentially provides a history driving
the algorithm away from recently visited locations. We
also tested other inhibition rates (α = 0.05, 0.01) and
other inhibition functions (exponential and linear), but
the results were similar. A useful observation which ties
these two techniques together is that inhibited probabi-
listic walk is equivalent to probabilistic walk when the
inhibition function is a dirac delta function, which fun-
damentally removes the inhibition.

The previous similarity metric on sample rate is use-
ful but does not capture a very important and desir-
able feature of navigation which is the nature of paths
formed over time. This is most apparent in the compar-
ison between probabilistic walk and inhibited probabi-
listic walk. Utilizing the mean time between samples for
each location, we gain a sense of the quantity of time that
passes before a high/low activity location is revisited, or
how long the path is before the location is revisited.
Notice this does not provide an evaluation of the path
itself, but provides an indication of the length of the
path. We examine the relative mean time between sam-
ples using Fig. 19b and the absolute mean time between
samples versus activity map value in Fig. 20. The relative
mean time between samples in Fig. 19b compared to the
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samples)

activity map (Fig. 16) shows that for all navigation meth-
ods, except for reinforcement learning paths, the mean
time between sample values is smaller at higher activ-
ity locations and larger at lower activity locations. The
result for reinforcement learning paths is similar; how-
ever, due to the strict paths, many low-activity locations
were not sampled resulting in zero values. Notice that
the mean time between samples is, in general, inversely
proportional to the sample rate, indicating high sampled
locations have relatively short times between samples
and vice versa.

In Fig. 20, we show the absolute mean time between
samples across different activity values for each naviga-
tion method. The variation of these navigation methods
provides an understanding of how the algorithm will
navigate a given activity map. In the case of probabi-
listic jump, walk, and inhibition, the path lengths for
small activity values are large and path lengths for large
activity values are small. Specifically, in the case of prob-
abilistic walk, due to the restriction of moving to only
neighboring locations the disparity between large and
small activity values is most significant. Hence, in the
short-term, probabilistic walk will tend to get stuck in
local maxima of the activity map, rarely visiting lower-
value activity map locations. Combating the inherent
nature of probabilistic walk to find and favor local max-
ima, the inhibited probabilistic walk suppresses recently
visited areas. As a result, there is less disparity between
mean time between samples for large and small activ-
ity map values. Note, however, that the path lengths for
higher activity map values are still shorter than for small
activity map values (i.e., favoring higher activity areas),
which affirms that the activity map information is being
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Table 5 Properties and limitations of each navigation algorithm

Navigation Properties Limitations

Probabilistic • Optimal according to • Discontinuous
jump previous observation scanning

• No training

Probabilistic • Spatio-temporal • Sampling distribution
walk consistency over short temporal

window is suboptimal
• Optimal over very (i.e., short paths)

long temporal windows • Easily caught in local
• No training maxima in activity map

Inhibited • Sample rate • Inhibition function and
random walk distribution over rate selection (α)

short temporal window
(i.e., longer paths)

• No training

Reinforcement • Optimal path between • Long training time
path learning two locations • Each update

requires retraining

used. Finally, in the case of reinforcement learning paths,
the path length for small activity map values is zero as
this algorithm never visits these locations. Also different
is that the mean time between samples does not neces-
sarily decrease with higher activity value. This is likely
due to the selection of goal locations and the limited
number of paths between goal locations.

Lastly, we provide a list of properties and limitations
in Table 5 for each navigation technique. We reiterate
here that this analysis provides neither a single optimal
technique nor a ranking of navigation techniques. This
is intentional due to the fact that the optimal naviga-
tion algorithm will vary depending on application and
situational context.

7 Discussion

In this work, some limitations exist with the activity
map presented in Sect. 4.6. The current system, as noted
previously, generates a single activity map for a sin-
gle PTZ camera, which fundamentally compresses time
into a single representation. Consequently, the natural
rhythms of daily life are lost. A natural extension of the
activity map is to include a temporal dimension to cap-
ture more seasonal/periodic behavior patterns [8]. We
plan to expand the activity map to incorporate time by
constructing the activity map at specific times (e.g., one
map each half hour), resulting in a single activity map at
each time step. This addition will provide the ability to
more accurately represent the activity of a given camera
where levels of activity vary greatly across time (e.g., a
parking lot, a university campus, etc.).

Discussions with surveillance personnel have also
shown the necessity for consideration of camera naviga-
tion with multiple magnifications and resolutions. A sim-
ple method to expand the current activity map to include
multiple magnifications and resolutions is to build an
activity map at a set of magnifications (e.g., 1×, 2×, 4×,
etc.) and a set of resolutions (e.g., 7×17, 14×34, 28×68,
etc.). This will result in a pyramid of activity maps for
both magnification and resolution, which can then be
used to navigate the camera where location selection
will occur across different levels of the magnification
and resolution pyramids. The quantity of magnification
and resolution for a location could also be adaptive to
the quantity of activity detected. These extensions to
the activity map will provide a more accurate and useful
model of a PTZ camera’s complete viewable field.

8 Summary and conclusion

We presented an adaptive, focus-of-attention, scene-
specific model using standard PTZ camera hardware
to address the lack of scene-specific information used
in current automatic camera scanning algorithms. Our
activity model is constructed by first detecting and quan-
tifying local human activity (translating motion) at
discrete pan/tilt locations over a camera’s complete view-
able field, and then using the activity measurements to
create a global activity map. We also presented four
automatic camera navigation techniques that employ
the activity map (past observations) to continually select
locations that maximize the opportunity of observing
(future) human activity.

The activity detection method for each local view is
based on an iterative candidacy–classification–reduction
process using MHIs. The candidacy and classification
stages are used to validate and then classify an MHI blob
as either target translating motion or noise. If a blob is
classified as noise, a reduction algorithm is applied to
extract any possible sub-regions containing translating
objects. A single activity measurement is then calculated
based on the final binary segmentation image. Activity
measurements at each discrete pan/tilt location are then
used to construct the global activity map. This activity
map is exploited by a camera navigation algorithm (e.g.,
probabilistic jump, probabilistic walk, inhibited probabi-
listic walk, or reinforcement learning Paths) to maximize
the opportunity of observing human activity. The activ-
ity map is treated as a pseudo-probability distribution
for probabilistic walk, probabilistic jump, and inhibited
probabilistic walk, and is interpreted as a reward func-
tion for reinforcement learning paths.
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Experiments examined the performance of our algo-
rithms related to measuring local activity, generating
global activity maps, and applying our navigation tech-
niques. After selecting optimal detection thresholds
determined from precision–recall results with manu-
ally segmented data, sample results on test data showed
the desired sensitivity to differences between translat-
ing objects and noise. Next, we presented a consistency
analysis of our activity map that demonstrated robust-
ness across both space and time. The results showed
that the high/low activity areas had high/low variabil-
ity in activity level, that low activity areas were gen-
erally quiescent over time, and that two overlapping
camera views yielded similar high activity areas. Lastly,
we compared the four navigation methods using sam-
ple rate and mean time between samples (path length).
The similarity (using Bhattacharya distance) between
the sample rates and the activity map showed that Prob-
abilistic Jump matched exactly, whereas reinforcement
learning paths was most dissimilar due to the limited
number of goal states and several unsampled locations.
For the mean time between samples comparison, prob-
abilistic jump, walk, and inhibition showed path lengths
that varied inversely with activity map value, while with
reinforcement learning paths, the path length was fairly
constant across activity level.

Overall, our current approach shows very promis-
ing results. In future work, we plan to examine addi-
tional features (e.g., gradient direction, color, texture)
for the detection component, which may result in more
robust segmentation but at an increased computational
cost. We will also investigate methods for temporal and
spatial updating of the activity map, which is necessary
for long-term operation of the system. We additionally
plan to incorporate multiple zoom factors to construct a
multi-scale activity map for navigation. Finally, we plan
to include anomaly detection and alerting mechanisms
based on past global observations (activity map) and
local current activity.
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