Time

Lecture 39
Interval vs Point

- Different questions:
 - “How long did it take to run 5k?”
 - “When is our final exam?”

- Answering “how long?” is easy
 - Count the number of elapsed seconds
 - Easy to code

- Answering “when?” is tricky
 - 4 pm (May 2, 2017) is not sufficient
 - Meaning depends on geolocation!
 - Even dates (May 2nd) have this problem
Solving Time/Place Problem

- Fix one place on earth, and use that location's time
 - We agreed (in 1884): Greenwich, England
 - Same location as used for longitude
 - “Prime Meridian” of longitude (ie 0°)
 - Aside: What are the co-ordinates of the oval?
 - Once called “Greenwich Mean Time” (GMT)
 - Now called “Coordinated Universal Time” (UTC)

- Example
 - CSE 3901 final exam is at 7 pm on May 2, 2017
 - So why does it say 3 pm on SIS?
Time Zones

- People want their clocks to show 12:00 when the sun is high in the sky

- Solution: Time zones
 - Geographic region that uses the same offset from Greenwich
 - Politically defined

- Abbreviations
 - EST = UTC-5:00 ("Standard", i.e. winter)
 - EDT = UTC-4:00 ("Daylight savings" summer)

- To report a time, append time zone
 - 2017-05-02 15:00:00 EDT
 - 2017-05-02 15:00:00 UTC-4:00
 - 2017-05-02 19:00:00 UTC
Notation: Encoding Date/Time

- Computer scientists understand the importance of representation/encoding
- Big Endian
 - `year-month-day hour:minute:second`
 - `2017-05-02 15:00:00`
 - Benefit: lexicographic = chronological
- Start at 0, not 1
 - Non-CS folks call this a "24-hour clock"!
 - CS folks call this... normal
 - 00:00 is midnight, 12:00 is noon
 - Benefit: Avoids am/pm ambiguities
Mixing Intervals and Points

- Mapping between these is tricky
- *E.g.* run a task *every day at 9 am*
 - Naïve solution: `java.util.Timer`’s schedule
 - `schedule(TimerTask t, Date first, long period)`
 - Period is an interval (number of milliseconds)
 - `schedule(job, noonToday, 86400000);`
- Problem?
From Intervals to Points

- Measure interval from a fixed point
 - Called “epoch”
 - Needed for both date (BC/AD) and time

- Unix: chose Jan 1, 1970
 - long time_t, count of elapsed seconds
 - What time is it? Approx. 1,492,015,000
 - See http://www.unixtimestamp.com
End of the World
From Intervals to Points

- Measure interval from a fixed point
 - Called “epoch”
 - Needed for both date (BC/AD) and time

- Unix: chose Jan 1, 1970
 - `long time_t`, count of elapsed seconds
 - What time is it? Approx. 1,492,015,000
 - See http://www.unixtimestamp.com
 - Stored as a (signed!) 32-bit integer
 - “max time” = $2^{32}-1 = 2.1$ billion = 68 years!

- Will overflow on Jan 19, 2038

- Solution: use 64 bit!
 - Postpones the problem for 290 billion years...
This hour has ?? minutes...
Seconds, Minutes, Hours, Days

- Days *do not* divide years evenly
 - About 365.242199 days/year
- But seconds *do* divide days evenly!
 - Exactly $24 \times 60 \times 60 = 86,400$ s/day

Why?
- Days & years are set independently by nature
- Seconds are our invention

How long is a second?
- Defined to be $1/86,400^{th}$ of a day
- SI second = $9,192,631,770$ oscillations of a caesium-133 atom (at rest, sea level, 0 Kelvin)
- Just one problem... how long is a day?
Problem: Solar / Sidereal Day
Problem: Apparent / Mean Solar

- We are closest to the sun in winter
 - Speed of orbit \propto distance to sun
- Also, Earth's axis is tilted
 - Sun (appears to) move along ecliptic
 - But Earth rotates along celestial equator
- Result: Each apparent solar day (24 hrs?) varies in length!
 - Can be +/- 30 seconds of average length
- Even worse: Variation is correlated!
 - Long days are consecutive during the year
 - Difference (local noon vs watch) accumulates
- Result: Net difference of +/- 15 minutes
Equation of Time
Do We Care?

- The equation of time lets you correctly convert time to/from position of sun
 - At what time will be “local noon” today?
 - See: www.timeanddate.com/sun

- This only matters if you care about the exact position of the sun any given day!
 - Eg sundials and sextants
 - So (mostly) no one cares

- All we need is average length of full day
 - A “mean solar day”
 - Horizontal axis in graph of equation of time
 - Measure it, super accurately, then divide by 86,400
Now For the *Really* Bad News
The Earth is Slowing Down

- Planet has been slowing down (and will continue to slow down)
- Today's "mean solar day" is longer than it was 200 years ago!
 - We use the mean solar day of 1750-1892 (averaged)
- Bad news: There are a bit more than 86,400 SI seconds / mean solar day
- *Really* bad news: We can't predict the size of this effect very far into future
Leap Seconds

- Mean solar day is longer than 86400 SI seconds
 - Tidal forces have slowed the rotation of the earth
 - Must correct clock time to stay synched with solar days

- Leap second: 1 second insertion/deletion
 - Irregular occurrence, UTC decides
 - Based on observation, impossible to predict
 - Since 1972, there have been 27 additions, no deletions
 - Most recent: Dec 31, 2016 (an addition)
Leap Second Episodes

<table>
<thead>
<tr>
<th>Year</th>
<th>Jun 30</th>
<th>Dec 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>1973</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1974</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1975</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1976</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1978</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1979</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1980</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1981</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1983</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1985</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1986</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1987</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1988</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1989</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Year</th>
<th>Jun 30</th>
<th>Dec 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>16</td>
</tr>
</tbody>
</table>

Current TAI - UTC

37
1 minute ≠ 60 seconds

- Addition/removal occurs during the last minute of Dec 31 or Jun 30
- Those minutes have 61 or 59 seconds!
 23:59:58, 23:59:59, 23:59:60, 00:00:00...
- Screen capture of the clock at time.gov during a leap second:
More Complications

- GPS satellites don’t reset their clocks
 - GPS time was equal to UTC time in 1980
 - Since then, has missed 18 leap seconds
 - http://leapsecond.com/java/gpsclock.htm

- Unix time *decrements* during leap second
 - Monotonic timer provided by NTP protocol

- Not all countries have adopted UTC

- Leap seconds will become more frequent
 - Proposals to abolish, replace with leap *hours*
GMT vs UT1 vs UTC

- GMT: Greenwich mean time
 - Antiquated: Should not be used today
- UT1: Universal time
 - Time at prime meridian
 - Determined by celestial movements
- TAI: Atomic time
 - Was equal to UT1 in 1958
 - Ticks in SI seconds
- UTC: Universal Coordinated Time
 - Ticks in SI seconds, like TAI
 - Periodically *modified* to match UT1
And we care because...

The Inside Story of the Extra Second That Crashed the Web

BY ROBERT MCMILLAN AND CADE METZ 07.02.12 7:54 PM
Summary

- Intervals vs points
 - Intervals are easy, points are tricky
 - Unix time: Seconds from 01/01/1970
 - Date/time is coupled to geolocation
- Interval between 2 points is hard
 - Number of days/year can vary
 - Number of hours/day can vary
 - Number of seconds/minute can vary
- Standardization
 - Mean solar day, SI seconds
 - They don't match: need leap seconds
- UT1, UTC, TAI