Color and Images

Lecture 21

Colors in CSS

\square Use: fonts, borders, backgrounds
\square Provides semantic signal:
Green - go, success, complete, solution
Red - stop, failure, incomplete, problem
Yellow - yield, warning, attention
\square Helps to set mood/emotion/tone:
Bright - cheerful, playful, positive
Dark - somber, serious, negative
Warm - energetic, alert, active
Cool - calm, tranquil, peaceful

Elementary Color Theory

\square Combination of
■ Physics: wavelengths in nm
■ Biology: perception of "red" vs "yellow" vs...
\square Visible spectrum: 390-700nm
■ Spectral colors: rainbow, single wavelength
■ Nonspectral colors (pink, brown, white...) result from presence of multiple wavelengths

Power Spectrum = Color

Color Perception

\square Human eyes have 3 types of cones

- Respond to different wavelengths (LMS)
\square Perceived color = eye's cone response

Metamerism

\square Different (continuous) spectra that stimulate our eyes in identical ways

- Consequence: Different spectra with indistinguishable (to humans) color
- Example: white
- Spectrum 1: all wavelengths equally present
- Spectrum 2: a few wavelengths present, stimulating LMS cones equally
\square Consequence: Any continuous spectrum can be projected down to 3 components (as far as human eyes are concerned)
- XYZ "tristimulus values"
- Not truly independent (overlap of response), so any 2 give the 3 rd; ie a 2D space...

CIE 1931 xy Chromaticity

Perceivable colors

Color Mixing

\square There are two ways to combine colors

1. Subtractive: Color is a filter

■ Mixing = filter out both
■ Used for printing (\& dyes, paints, gels)
2. Additive: Color is a light source

- Mixing = sum
- Used for monitors

Subtractive Color Mixing: CMYK

\square Filters transmit different spectra

- Mixture transmits the product of both
- Mix all three primaries = black
\square Primary colors: cyan, magenta, yellow
■ Black (K) added for quality and cost
■ Traditional set (RYB) popular for painting

Colors as Filters

Yellow:

Filters out (only) blue

Rosi et al., Euro. J. of Physics, 37(6), 2016

Additive Color Mixing: RGB Cube

yellow

Color Mixing: sRGB Gamut

Gamuts for Monitors

And Many More Gamuts...

HSL Color Wheel (50\% Lightns)

Computer Science and Engineering ■ The Ohio State University

HSL Color Wheel (100\% Sat)

Computer Science and Engineering - The Ohio State University

HSL Color Space: 3D Cylinder

HSL Color Space: 3D Cylinder

HSL Grid for Red (ie 0, S, L)

CSS Color Values

\square Keywords: case-insensitive identifiers
red, navy, firebrick, chocolate
\square RGB as decimal (0-255), percentage, or hex
rgb (255, 0, 0) /* pure red */
rgb ($100 \%, 0 \%, 0 \%$)
\#ff0000
\#f00 /* expand by doubling each digit */
\square HSL (Hue, Saturation, Light)
■ Hue (0-360) is angle on color wheel: 0 is red, 120 green, 240 blue

- Saturation \& light are both \%'s hsl ($0,100 \%$, 50\%) /* full bright red */
\square Alpha channel (transparency): 1 is opaque!
rgba (255, 0, 0, 0.5)
hsla ($0,100 \%$, 50%, 1)

Color Keywords: 147 (141 dist.)

aliceblue	antiquewhite	aqua	aquamarine	azure	beige
bisque		blanchedalmond	blue	blueviolet	brown
burlywood	cadetblue	chartreuse	chocolate	coral	cornflowerblue
cornsilk	crimson	cyan	rkbut	darkcyan	darkgoldenrod
darkgray	darkgreen	darkkhaki	darkmagenta	darkolivegreen	darkorange
darkorchid	darkred	darksalmon	darkseagreen	darkslateblue	darkslategray
darkturquoise	darkviolet	deeppink	deepskyblue	dimgray	dodgerblue
firebrick	floralwhite	forestgreen	fuchsia	gainsboro	ghostwhite
gold	goldenrod	gray	green	greenyellow	honeydew
hotpink	indianred	indigo	ivory	khaki	lavender
lavenderblush	lawngreen	lemonchiffon	lightblue	lightcoral	lightcyan
lightgoldenrodyellow	lightgray	lightgreen	lightpink	lightsalmon	lightseagreen
lightskyblue	lightslategray	lightsteelblue	lightyellow	lime	limegreen
linen	magenta	maroon	mediumaquamarine	mediumblue	mediumorchid
mediumpurple	mediumseagreen	mediumslateblue	mediumspringgreen	mediumturquoise	mediumvioletred
midnightblue	mintcream	mistyrose	moccasin	navajowhite	
oldlace	olive	olivedrab	orange	orangered	orchid
palegoldenrod	palegreen	paleturquoise	palevioletred	papayawhip	peachpuff
peru	pink	plum	powderblue	purple	rebeccapurple
red	rosybrown	royalblue	saddlebrown	salmon	sandybrown
seagreen	seashell	sienna	silver	skyblue	slateblue
slategray	snow	springgreen	steelblue	tan	teal
thistle	tomato	turquoise	violet	wheat	white

| whitesmoke yellowgreen |
| :---: | :---: | :---: |

Color Depth

- "Depth" = \# of bits in representation
- 8 bits $\rightarrow 256$ different colors
- 24 bits $\rightarrow 16,777,216$ different colors (eg 8 bits each for r, g, b)
\square Alpha may be (incorrectly) included
- rgba is a point in 4-dimensional space
\square Problem: image color depth > display color depth
■ Quantization: each pixel gets closest available color (leads to banding)
■ Dithering: add noise, which looks better!

Quantization of Continuous Func

Computer Science and Engineering ■ The Ohio State University

Quantization vs Dithering

Quantization vs Dithering

Original Image

GIF without dithering

GIF with dithering

HTML Tag Attributes

\square src: location (URL) of image file
\square width, height:

- Area in window to reserve for image
- Image is scaled to those dimensions
- These attributes affect browser flow, regardless of when/if image is displayed
\square alt: text to show if graphic can not be displayed or seen (ie alternative)
\square title: text to augment displayed graphic (eg tooltip)

Image Representation

\square Raster vs vector graphics
■ Raster: stored pixel-by-pixel

- Vector: mathematical description
\square Compression of raster images
■ Lossy: better compression, lower quality image
■ Lossless: largest file size, best quality

Major Formats

\square GIF
■ Raster graphics, lossy compression (oldest)

- 8 bit, basic transparency (on/off)
- Frame-based animation (groan)
- Good for small file size, crisp lines, logos

ㅁ JPEG

- Raster, lossy compression
- 24 bit, no transparency
- Good for photos, gradual gradients
\square PNG
■ Raster, lossless (but still often good) compression
- Variable depth, full alpha transparency
- Good replacement for GIF (but no animation)
\square SVG
■ vector graphics
- Good for crisp lines, simple logos, graphs

Scaling Images

\square Vector graphics scale perfectly

\square Raster images should be pre-scaled

- Width (height) attributes of image tag should match actual width (height) of image
\square Why?
\square Cloud services can help (eg cloudinary.com)

Alternative: CSS

```
.button {
    display: inline-block;
    padding: 0.3em 1.2em;
    margin: 0 0.3em 0.3em 0;
    border-radius: 2em;
    box-sizing: border-box;
    text-decoration: none;
    font-weight: 300;
    color: #FFFFFF;
    background-color: #4eb5f1;
    text-align: center;
    transition: all 0.2s;
}
```


Summary

\square Color theory

- Perception, metamerism
- Mixing: subtractive, additive
- RGB, HSL, keywords
\square Images
- Quantization and dithering
- Raster graphics vs vector graphics

■ Formats jpeg, png, gif, svg

- Tradeoffs of size, quality, features

