# Color and Images

Computer Science and Engineering ■ College of Engineering ■ The Ohio State University

#### Lecture 21

## Colors in CSS

- □ Use: fonts, borders, backgrounds
- Provides semantic signal:
   Green go, success, complete, solution
   Red stop, failure, incomplete, problem
   Yellow yield, warning, attention
- Helps to set mood/emotion/tone:
   Bright cheerful, playful, positive
   Dark somber, serious, negative
   Warm energetic, alert, active
   Cool calm, tranguil, peaceful

## **Elementary Color Theory**

Computer Science and Engineering 
The Ohio State University

#### Combination of

- Physics: wavelengths in nm
- Biology: perception of "red" vs "yellow" vs...
- □ Visible spectrum: 390-700nm
  - Spectral colors: rainbow, single wavelength
  - Nonspectral colors (pink, brown, white...) result from presence of *multiple* wavelengths



## Power Spectrum = Color



## **Color Perception**

Computer Science and Engineering 📕 The Ohio State University

# Human eyes have 3 types of cones Respond to different wavelengths (LMS) Perceived color = eye's cone response



#### Metamerism

Computer Science and Engineering **■** The Ohio State University

- Different (continuous) spectra that stimulate our eyes in identical ways
  - Consequence: Different spectra with indistinguishable (to humans) color

#### □ Example: white

- Spectrum 1: all wavelengths equally present
- Spectrum 2: a few wavelengths present, stimulating LMS cones equally
- Consequence: Any continuous spectrum can be projected down to 3 components (as far as human eyes are concerned)
  - XYZ "tristimulus values"
  - Not truly independent (overlap of response), so any 2 give the 3<sup>rd</sup>; ie a 2D space...

## CIE 1931 xy Chromaticity



## Color Mixing

- □ There are two ways to combine colors
- 1. Subtractive: Color is a *filter* 
  - Mixing = filter out both
  - Used for printing (& dyes, paints, gels)
- 2. Additive: Color is a *light source* 
  - Mixing = sum
  - Used for monitors



# Subtractive Color Mixing: CMYK

- □ Filters transmit different *spectra* 
  - Mixture transmits the product of both
  - Mix all three primaries = black
- Primary colors: cyan, magenta, yellow
  - Black (K) added for quality and cost
  - Traditional set (RYB) popular for painting









Rosi et al., Euro. J. of Physics, 37(6), 2016

# Additive Color Mixing: RGB Cube



#### Color Mixing: sRGB Gamut



#### Gamuts for Monitors



https://dot-color.com/2012/12/11/color-of-the-year-for-2013-falls-outside-srgb-gamut/

#### And Many More Gamuts...



# HSL Color Wheel (50% Lightns)



# HSL Color Wheel (100% Sat)



# HSL Color Space: 3D Cylinder



# HSL Color Space: 3D Cylinder



# HSL Grid for Red (ie 0, S, L)



## **CSS** Color Values

Computer Science and Engineering 📕 The Ohio State University

Keywords: case-insensitive identifiers red, navy, firebrick, chocolate  $\square$  RGB as decimal (0-255), percentage, or hex rgb (255, 0, 0) /\* pure red \*/ rgb (100%, 0%, 0%) #ff0000 #f00 /\* expand by doubling each digit \*/ □ HSL (Hue, Saturation, Light) Hue (0-360) is angle on color wheel: 0 is red, 120 green, 240 blue Saturation & light are both %'s hsl (0, 100%, 50%) /\* full bright red \*/ □ Alpha channel (transparency): 1 is opaque! rgba (255, 0, 0, 0.5) hsla (0, 100%, 50%, 1)

# Color Keywords: 147 (141 dist.)

| aliceblue                     | antiquewhite   | aqua            | aquamarine        | azure           | beige           |
|-------------------------------|----------------|-----------------|-------------------|-----------------|-----------------|
| bisque                        |                | blanchedalmond  | blue              | blueviolet      | brown           |
| burlywood                     | cadetblue      | chartreuse      | chocolate         | coral           | cornflowerblue  |
| cornsilk                      | crimson        | cyan            | darkblue          | darkcyan        | darkgoldenrod   |
| darkgray                      | darkgreen      | darkkhaki       | darkmagenta       | darkolivegreen  | darkorange      |
| darkorchid                    | darkred        | darksalmon      | darkseagreen      | darkslateblue   | darkslategray   |
| darkturquoise                 | darkviolet     | deeppink        | deepskyblue       | dimgray         | dodgerblue      |
| firebrick                     | floralwhite    | forestgreen     | fuchsia           | gainsboro       | ghostwhite      |
| gold                          | goldenrod      | gray            | green             | greenyellow     | honeydew        |
| hotpink                       | indianred      | indigo          | ivory             | khaki           | lavender        |
| lavenderblush                 | lawngreen      | lemonchiffon    | lightblue         | lightcoral      | lightcyan       |
| lightgoldenrodyellow          | lightgray      | lightgreen      | lightpink         | lightsalmon     | lightseagreen   |
| lightskyblue                  | lightslategray | lightsteelblue  | lightyellow       | lime            | limegreen       |
| linen                         | magenta        | maroon          | mediumaquamarine  | mediumblue      | mediumorchid    |
| mediumpurple                  | mediumseagreen | mediumslateblue | mediumspringgreen | mediumturquoise | mediumvioletred |
| midnightblue                  | mintcream      | mistyrose       | moccasin          | navajowhite     | navy            |
| oldlace                       | olive          | olivedrab       | orange            | orangered       | orchid          |
| palegoldenrod                 | palegreen      | paleturquoise   | palevioletred     | papayawhip      | peachpuff       |
| peru                          | pink           | plum            | powderblue        | purple          | rebeccapurple   |
| red                           | rosybrown      | royalblue       | saddlebrown       | salmon          | sandybrown      |
| seagreen                      | seashell       | sienna          | silver            | skyblue         | slateblue       |
| slategray                     | snow           | springgreen     | steelblue         | tan             | teal            |
| thistle                       | tomato         | turquoise       | violet            | wheat           | white           |
| whitesmoke yellow yellowgreen |                |                 |                   |                 |                 |

# Color Depth

- $\square$  "Depth" = # of bits in representation
  - 8 bits  $\rightarrow$  256 different colors
  - 24 bits → 16,777,216 different colors (eg 8 bits each for r, g, b)
- Alpha may be (incorrectly) included
   rgba is a point in 4-dimensional space
- Problem: image color depth > display color depth
  - Quantization: each pixel gets closest available color (leads to banding)
  - Dithering: add noise, which looks better!

### Quantization of Continuous Func



## Quantization vs Dithering

Computer Science and Engineering 
The Ohio State University



quantized

dithered

## Quantization vs Dithering



**Original Image** 



GIF without dithering



GIF with dithering

# HTML <img> Tag Attributes

Computer Science and Engineering 🔳 The Ohio State University

**src:** location (URL) of image file

uidth, height:

- Area in window to reserve for image
- Image is scaled to those dimensions
- These attributes affect browser flow, regardless of when/if image is displayed
- alt: text to show if graphic can not be displayed or seen (ie alternative)
- Litle: text to augment displayed
  graphic (eg tooltip)

## **Image Representation**

- Raster vs vector graphics
  - Raster: stored pixel-by-pixel
  - Vector: mathematical description
- Compression of raster images
  - Lossy: better compression, lower quality image
  - Lossless: largest file size, best quality

## **Major Formats**

Computer Science and Engineering 🔳 The Ohio State University

#### □ GIF

- Raster graphics, lossy compression (oldest)
- 8 bit, basic transparency (on/off)
- Frame-based animation (groan)
- Good for small file size, crisp lines, logos
- JPEG
  - Raster, lossy compression
  - 24 bit, no transparency
  - Good for photos, gradual gradients
- PNG
  - Raster, lossless (but still often good) compression
  - Variable depth, full alpha transparency
  - Good replacement for GIF (but no animation)
- □ SVG
  - vector graphics
  - Good for crisp lines, simple logos, graphs

# Scaling Images

Computer Science and Engineering 📕 The Ohio State University

Vector graphics scale perfectly



- □ Raster images should be *pre-scaled* 
  - Width (height) attributes of image tag should match actual width (height) of image
  - □ Why?
  - Cloud services can help (eg cloudinary.com)

#### Alternative: CSS

Computer Science and Engineering 
The Ohio State University



.button { display: inline-block; padding: 0.3em 1.2em; margin: 0 0.3em 0.3em 0; border-radius: 2em; box-sizing: border-box; text-decoration: none; font-weight: 300; color: #FFFFFF; background-color: #4eb5f1; text-align: center; transition: all 0.2s;

#### Summary

Computer Science and Engineering 
The Ohio State University

#### **Color** theory

- Perception, metamerism
- Mixing: subtractive, additive
- RGB, HSL, keywords

#### Images

- Quantization and dithering
- Raster graphics vs vector graphics
- Formats jpeg, png, gif, svg
- Tradeoffs of size, quality, features