Color and Images

Lecture 19
Colors in CSS

- Use: fonts, borders, backgrounds
- Provides semantic signal:
 - **Green** – go, success, complete, solution
 - **Red** – stop, failure, incomplete, problem
 - **Yellow** – yield, warning, attention
- Helps to set mood/emotion/tone:
 - **Bright** – cheerful, playful, positive
 - **Dark** – somber, serious, negative
 - **Warm** – energetic, alert, active
 - **Cool** – calm, tranquil, peaceful
Elementary Color Theory

- Combination of
 - Physics: wavelengths in nm
 - Biology: perception of “red” vs “yellow” vs...
- Visible spectrum: 390-700nm
 - Spectral colors: rainbow, single wavelength
 - Nonspectral colors (pink, brown, white...) result from presence of *multiple* wavelengths
Power Spectrum = Color
Color Perception

- Human eyes have 3 types of cones
 - Respond to different wavelengths (LMS)
- Perceived color = eye's cone response
Metamerism

- Different (continuous) spectra that stimulate our eyes in identical ways
 - Consequence: Different spectra with indistinguishable (to humans) color

- Example: white
 - Spectrum 1: all wavelengths equally present
 - Spectrum 2: a few wavelengths present, stimulating LMS cones equally

- Consequence: Any continuous spectrum can be projected down to 3 components (as far as human eyes are concerned)
 - XYZ “tristimulus values”
 - Not truly independent (overlap of response), so any 2 give the 3rd; ie a 2D space...
CIE 1931 xy Chromaticity

Max luminance (100%)

Perceivable colors

Spectral (pure) colors
Color Mixing

- There are two ways to combine colors
 1. Subtractive: Color is a *filter*
 - Mixing = filter out both
 - Used for printing (& dyes, paints, gels)
 2. Additive: Color is a *light source*
 - Mixing = sum
 - Used for monitors
Subtractive Color Mixing: CMYK

- Filters transmit different *spectra*
 - Mixture transmits the *product* of both
 - Mix all three primaries = black

- Primary colors: cyan, magenta, yellow
 - Black (K) added for quality and cost
 - Traditional set (RYB) popular for painting

Primary yellow (transmits R & G) (absorb B)
Colors as Filters

Yellow: Filters out (only) blue

Rosi et al., Euro. J. of Physics, 37(6), 2016
Additive Color Mixing: RGB Cube

- primary
- secondary

#fff /* white */
#000 /* black */

http://www.flickr.com/photos/ethanhein/3103830956/
Color Mixing: sRGB Gamut
Gamuts for Monitors

And Many More Gamuts...
HSL Color Wheel (50% Lightness)

HSL Color Wheel (100% Sat)

HSL Color Space: 3D Cylinder

- Hue
- Saturation
- Lightness
HSL Color Space: 3D Cylinder

- Hue
- Saturation
- Lightness
HSL Grid for Red (ie 0, S, L)

(0, 75%, 88%)

(0, 100%, 50%)

(0, 0%, 25%)
CSS Color Values

- Keywords: case-insensitive identifiers
 - red, navy, firebrick, chocolate

- RGB as decimal (0-255), percentage, or hex
 - `rgb (255, 0, 0) /* pure red */`
 - `rgb (100%, 0%, 0%)`
 - `#ff0000`
 - `#f00 /* expand by doubling each digit */`

- HSL (Hue, Saturation, Light)
 - Hue (0-360) is angle on color wheel: 0 is red, 120 green, 240 blue
 - Saturation & light are both %'s
 - `hsl (0, 100%, 50%) /* full bright red */`

- Alpha channel (transparency): 1 is opaque!
 - `rgba (255, 0, 0, 0.5)`
 - `hsla (0, 100%, 50%, 1)`
Color Keywords: 147 (141 dist.)

<table>
<thead>
<tr>
<th>Color Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliceblue</td>
<td>antiquewhite</td>
<td>aqua</td>
<td>aquamarine</td>
<td>azure</td>
<td>beige</td>
<td></td>
</tr>
<tr>
<td>bisque</td>
<td>blanchedalmond</td>
<td>blue</td>
<td>blueviolet</td>
<td>brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>burlywood</td>
<td>cadetblue</td>
<td>chartreuse</td>
<td>chocolate</td>
<td>coral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cornsilk</td>
<td>crimson</td>
<td>cyan</td>
<td>darkblue</td>
<td>darkcyan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>darkgray</td>
<td>darkgreen</td>
<td>darkkhaki</td>
<td>darkmagenta</td>
<td>darkolivegreen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>darkorchid</td>
<td>darkred</td>
<td>darksalmon</td>
<td>darkseagreen</td>
<td>darkorange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>darkturquoise</td>
<td>darkviolet</td>
<td>deeppink</td>
<td>deepskyblue</td>
<td>dimgray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>firebrick</td>
<td>floralwhite</td>
<td>forestgreen</td>
<td>fuchsia</td>
<td>gainsboro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gold</td>
<td>goldenrod</td>
<td>gray</td>
<td>green</td>
<td>ghostwhite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hotpink</td>
<td>indianred</td>
<td>indigo</td>
<td>ivory</td>
<td>honeydew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lavenderblush</td>
<td>lawngreen</td>
<td>lemonchiffon</td>
<td>lightblue</td>
<td>lightcyan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lightgoldenrodyellow</td>
<td>lightgray</td>
<td>lightgreen</td>
<td>lightpink</td>
<td>lightsalmon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lightskyblue</td>
<td>lightslategrey</td>
<td>lightsteelblue</td>
<td>lightyellow</td>
<td>lime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linen</td>
<td>magenta</td>
<td>maroon</td>
<td>mediumaquamarine</td>
<td>limegreen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mediumpurple</td>
<td>mediumseagreen</td>
<td>mediumslateblue</td>
<td>mediumspringgreen</td>
<td>mediumturquoise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>midnightblue</td>
<td>mintcream</td>
<td>mistyrose</td>
<td>moccasin</td>
<td>mediumvioleted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oldlace</td>
<td>olive</td>
<td>olivedrab</td>
<td>orange</td>
<td>navajowhite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>palegoldenrod</td>
<td>palegreen</td>
<td>paleturquoise</td>
<td>palevioletred</td>
<td>peachfuzz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peru</td>
<td>pink</td>
<td>plum</td>
<td>powderblue</td>
<td>papayawhip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>rosybrown</td>
<td>royalblue</td>
<td>saddlebrown</td>
<td>peaches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seagreen</td>
<td>seashell</td>
<td>sienna</td>
<td>silver</td>
<td>purple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slategray</td>
<td>snow</td>
<td>springgreen</td>
<td>steelblue</td>
<td>rebeccapurple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thistle</td>
<td>tomato</td>
<td>turquoise</td>
<td>violet</td>
<td>teal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whitesmoke</td>
<td>yellow</td>
<td>yellowgreen</td>
<td>wheat</td>
<td>white</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Color Depth

- “Depth” = # of bits in representation
 - 8 bits \rightarrow 256 different colors
 - 24 bits \rightarrow 16,777,216 different colors
 (e.g., 8 bits each for r, g, b)
- Alpha may be (incorrectly) included
 - rgba is a point in 4-dimensional space
- Problem: image color depth > display color depth
 - Quantization: each pixel gets closest available color (leads to banding)
 - Dithering: add noise, which looks better!
Quantization of Continuous Func
Quantization vs Dithering

original

quantized
dithered
Quantization vs Dithering

Original Image

GIF without dithering

GIF with dithering

HTML `` Tag Attributes

- **src**: location (URL) of image file
- **width, height**:
 - Area in *window* to reserve for image
 - Image is *scaled* to those dimensions
 - These attributes affect browser flow, regardless of when/if image is displayed
- **alt**: text to show if graphic cannot be displayed or seen (i.e., alternative)
- **title**: text to *augment* displayed graphic (e.g., tooltip)
Image Representation

- Raster vs vector graphics
 - Raster: stored pixel-by-pixel
 - Vector: mathematical description

- Compression of raster images
 - Lossy: better compression, lower quality image
 - Lossless: largest file size, best quality
Major Formats

- **GIF**
 - Raster graphics, lossy compression (oldest)
 - 8 bit, basic transparency (on/off)
 - Frame-based animation (groan)
 - Good for small file size, crisp lines, logos

- **JPEG**
 - Raster, lossy compression
 - 24 bit, no transparency
 - Good for photos, gradual gradients

- **PNG**
 - Raster, lossless (but still often good) compression
 - Variable depth, full alpha transparency
 - Good replacement for GIF (but no animation)

- **SVG**
 - Vector graphics
 - Good for crisp lines, simple logos, graphs
Scaling Images

- Vector graphics scale perfectly

- Raster images should be *pre-scaled*
 - Width (height) attributes of image tag should match actual width (height) of image
 - Why?
 - Cloud services can help (eg cloudinary.com)
Alternative: CSS

```css
.button {
  display: inline-block;
  padding: 0.3em 1.2em;
  margin: 0 0.3em 0.3em 0;
  border-radius: 2em;
  box-sizing: border-box;
  text-decoration: none;
  font-weight: 300;
  color: #FFFFFF;
  background-color: #4eb5f1;
  text-align: center;
  transition: all 0.2s;
}
```
Summary

- **Color theory**
 - Perception, metamerism
 - Mixing: subtractive, additive
 - RGB, HSL, keywords

- **Images**
 - Quantization and dithering
 - Raster graphics vs vector graphics
 - Formats jpeg, png, gif, svg
 - Tradeoffs of size, quality, features