Networking Fundamentals: IP, DNS, URL, MIME

Lecture 10
Internet Protocol (IP) Addresses

- A unique 32-bit number
 - Assigned to device connected to internet
 - An address for delivery of packets

- Written in “dotted-decimal” notation
 - Divided into 4 fields separated by “.”
 - Each field is 8 bits, ie 0-255 decimal
 - 10100100011010110111101100000110
 - 10100100.01101011.01111011.00000110
 - 164.107.123.6

- Some are reserved: eg, 127.0.0.1
Abstract Value vs Encoding

- Abstraction: 32-bit integer value
- Encodings
 - Dotted decimal
 - Dotted hex
 - Dotted octal
 - Hexadecimal
 - Decimal
 - Binary
 - Etc...
- Recall: abstraction, representation, correspondence relation
Address Space

- Organizations are allocated blocks of contiguous address to use
- 32 bits means 4 billion addresses
 - Population of the earth: 7 billion
 - Not enough addresses to go around!
- The end is predictable
 - Techniques like NAT developed to help
- In fact, the end has come!
 - Feb 2011: Last block was allocated
IPv6

- 128 bits
 - \(\approx 10^{40} \) addresses; we’re good for a while
 - A growing fraction of IP traffic
 - [GoogleIPv6 statistics](#)

- Recommended format (canonical):
 - Divide into 8 fields separated by "::"
 - Each field is 4 hex digits (0-FFFF), ie 16 bits
 - Omit *leading* 0’s in a field
 - If there are *consecutive* fields with value 0, compress them as "::"

- Compress *at most one* such set of 0’s
 - Otherwise encoding could be ambiguous
 - Compress the longest sequence
Canonical Format: Uniqueness

2001:0db8:0000:0000:0000:ff00:0042:8329
2001:0db8:0000:0000:0000:ff00:0042:8329

2001:db8:0:0:0:ff00:42:8329
2001:db8:0:0:0:ff00:42:8329

2001:db8::ff00:42:8329
2001:db8::ff00:42:8329
Domain Names

- String corresponds to an IP address
 - `web.cse.ohio-state.edu` is easier than `164.107.123.6`
 - See host, whois

- Case insensitive: Lower-case standard

- A partial map (almost)
 - DNS maps lower-case strings → IP addresses
 - Multiple strings can map to same address!
 - Some strings map to multiple addresses (unusual)!
Domain Name Hierarchy

- Separated by .'s
 - Don’t confuse with dotted decimal!
- Right-to-left hierarchy
 - Top-level domain is right-most field
 - edu, com, net, gov, countries (ca, it, ...)
 - Second-level domain to its left
 - Then third, fourth, etc, no limit
 - www.sos.state.oh.us
- Hostname + Domain Name = Fully Qualified Domain Name (FQDN)
 - stdlinux.cse.ohio-state.edu
Name Servers

- Act as a phonebook for lookup

Client view:
- Given a FQDN, return IP address
- Partial map: FQDNs → IP addresses

Implementation view:
- Hierarchical by domain
- Local caching for recently retrieved items
Protocols

- Systematic ordering of messages
 - Phone rings
 - Callee answers by saying “Hello”
 - Caller answers by saying “Hello”

- Different protocols use different messages, different sequencing, etc
 - In Italy, callee answers by saying “Pronto”
Network Layering: Abstraction

- One protocol is built on top of another
 - Application level: FTP, HTTP, SSH, SMTP, TELNET
 - Transport: TPC, UDP
 - Internet: IP

- Each protocol assumes certain behavior from layer below
 - IP routes packets to destination (unreliable)
 - TCP creates a reliable, in-order channel
 - HTTP delivers web pages
Network Ports

- A single host has many ports
- Application-level protocols have default port
 - ftp -> 20
 - http -> 80
 - imap -> 143
 - ssh -> 22
 - smtp -> 25
 - telnet -> 23

- A “web server” is a running program, waiting, listening for a call (on port 80)
 - See telnet
URL

- Uniform Resource Locator
 scheme://FQDN:port/path?query#fragment
- Schemes include http, ftp, mailto, file...
 - Case insensitive, but prefer lower case
- Port is optional (each scheme has default)
 - 80 for http
- Variety of formats, depending on scheme
 ftp://doe@ftp.cse.ohio-state.edu
 mailto://brutus.1@osu.edu
- FQDN is case insensitive, prefer lower case
Abstract Value and Encoding

- Concrete invariant (convention)
 - No space, ;, :, &, in encoding
 - To represent these characters in abstract value, use %hh instead (hh is ASCII code in hex)
 - %20 for space
 - Q: What about % in abstract value?

- Recall: correspondence relation

- Known as "URL encoding", or "percent encoding"
URL Encoding

Reserved characters after percent-encoding

| ! | # | $ | & | ¢ | (|) | * | + | , | / | : | ; | = | ? | @ | [|] |
| %21 | %23 | %24 | %26 | %27 | %28 | %29 | %2A | %2B | %2C | %2F | %3A | %3B | %3D | %3F | %40 | %5B | %5D |

Common characters after percent-encoding (ASCII or UTF-8 based)

| newline | space | " | % | – | . | < | > | \ | ^ | _ | ` | { | | | |
|---------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| %0A or %0D | %20 | %22 | %25 | %2D | %2E | %3C | %3E | %5C | %5E | %5F | %60 | %7B | %7C | %7D | %7E |
Document Root

- Web server configured to serve documents from a location in file system
 - “document root”: /class/3901
 - File: /class/3901/labs/lab2.html
 - URL: http://www.cse.osu.edu/labs/lab2.html

- Slashes in path should be for server’s OS (but forward slashes are common)

- Virtual servers: multiple doc roots
- Proxy servers: remote doc roots
MIME

- Multipurpose Internet Mail Extensions
 - Used to be for mail attachments

- Content Type: How to interpret a file
 - File is a blob of bits (encoding)
 - How to map this blob into (abstract) value? Colors, sounds, characters, etc?
 - Recall: *correspondence relation*

- Syntax: type/subtype
 - text/plain, text/html, text/css, text/javascript
 - image/gif, image/png, image/jpeg
 - video/mpeg, video/quicktime

- Transfer encoding: A *layered* encoding
 - quoted-printable, base64
Example: Multiple Parts

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUg
+VGhpcyBpcyB0aGUgbWVzc2FnZS48L3A+

--aFrontierString--
Example: Content Type

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUgYm9keSBvZiB0aGUgbWVzc2FnZS48L3A+
--aFrontierString--
Example: Transfer Encoding

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUgYm9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
--aFrontierString--
Layered Encoding

source (image)

content (bits)

encoded (alphabet)

transmission (bits)

Content-Type: image/jpeg
Content-Transfer-Encoding: base64
ASCII

xffd8ffe000104a464946…
/9j/4AAQSk…
2f396a2f344141536b…
Base64 Alphabet

<table>
<thead>
<tr>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>16</td>
<td>Q</td>
<td>32</td>
<td>g</td>
<td>48</td>
<td>w</td>
<td>64</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>17</td>
<td>R</td>
<td>33</td>
<td>h</td>
<td>49</td>
<td>x</td>
<td>65</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>18</td>
<td>S</td>
<td>34</td>
<td>i</td>
<td>50</td>
<td>y</td>
<td>66</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>19</td>
<td>T</td>
<td>35</td>
<td>j</td>
<td>51</td>
<td>z</td>
<td>67</td>
<td>_</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>20</td>
<td>U</td>
<td>36</td>
<td>k</td>
<td>52</td>
<td>0</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>21</td>
<td>V</td>
<td>37</td>
<td>l</td>
<td>53</td>
<td>1</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>22</td>
<td>W</td>
<td>38</td>
<td>m</td>
<td>54</td>
<td>2</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>23</td>
<td>X</td>
<td>39</td>
<td>n</td>
<td>55</td>
<td>3</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>24</td>
<td>Y</td>
<td>40</td>
<td>o</td>
<td>56</td>
<td>4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J</td>
<td>25</td>
<td>Z</td>
<td>41</td>
<td>p</td>
<td>57</td>
<td>5</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>26</td>
<td>a</td>
<td>42</td>
<td>q</td>
<td>58</td>
<td>6</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>27</td>
<td>b</td>
<td>43</td>
<td>r</td>
<td>59</td>
<td>7</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>28</td>
<td>c</td>
<td>44</td>
<td>s</td>
<td>60</td>
<td>8</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>N</td>
<td>29</td>
<td>d</td>
<td>45</td>
<td>t</td>
<td>61</td>
<td>9</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>30</td>
<td>e</td>
<td>46</td>
<td>u</td>
<td>62</td>
<td>+</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>31</td>
<td>f</td>
<td>47</td>
<td>v</td>
<td>63</td>
<td>/</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

en.wikipedia.org/wiki/Base64
Base64 Encoding

<table>
<thead>
<tr>
<th>source ASCII (if <128)</th>
<th>M</th>
<th>a</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>source octets</td>
<td>77 (0x4d)</td>
<td>97 (0x61)</td>
<td>110 (0x6e)</td>
</tr>
<tr>
<td>Bit pattern</td>
<td>01001101</td>
<td>01100001</td>
<td>01101110</td>
</tr>
<tr>
<td>Index</td>
<td>19</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>Base64-encoded</td>
<td>T</td>
<td>W</td>
<td>F</td>
</tr>
<tr>
<td>encoded octets</td>
<td>84 (0x54)</td>
<td>87 (0x57)</td>
<td>70 (0x46)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text content</th>
<th>M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>77 (0x4d)</td>
<td>0 (0x00)</td>
</tr>
<tr>
<td>Bit pattern</td>
<td>01001101</td>
<td>00000000</td>
</tr>
<tr>
<td>Index</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Base64-encoded</td>
<td>T</td>
<td>Q</td>
</tr>
</tbody>
</table>

en.wikipedia.org/wiki/Base64
Quoted-Printable Encoding

- Alternative to base64 for making any binary data "printable"
 - Binary data uses all 8 bits
 - ASCII data uses only 7 (first bit is 0)
- Mapping each byte (just a sketch)
 - If first bit is already 0, do nothing
 - If first bit is 1, replace with 3 bytes: "=XY" where XY is the hex value being encoded
- Limit line length to 76 characters
- Finish lines with "="
- Q: What if data contains the byte "="?
J'interdis aux marchands de vanter trop leur marchandises. Car ils se font vite pédagogues et t'enseignent comme but ce qui n'est par essence qu'un moyen, et te trompant ainsi sur la route à suivre les voilà bientôt qui te dégradent, car si leur musique est vulgaire ils te fabriquent pour te la vendre une âme vulgaire.

J'interdis aux marchands de vanter trop leur marchandises. Car ils se font vite pédagogues et t'enseignent comme but ce qui n'est par essence qu'un moyen, et te trompant ainsi sur la route suit la voie qui te dégradent, car si leur musique est vulgaire ils te fabriquent pour te la vendre une âme vulgaire.
Determining MIME Type

- The sender (web server) determines MIME type of document being sent
 - Rules map file extensions to MIME types
- If file arrives without MIME info, receiver has to guess
 - File extension may help
 - Contents may help: "magic number"
 - JPG files always start with ff d8
 - PNG files always start with 89 50 4e 47
- Some types handled by browser itself
- Others require plugin or application
- Experimental MIME subtypes: x-
 - application/x-gzip
Summary

- IP address are unique on network
 - IPv4 vs IPv6
- DNS maps strings to IP addresses
 - Domains nested hierarchically
- URLs identify resources on network
 - Scheme, host, path
- MIME type defines a file’s encoding
 - Correspondence
 - Layered encodings are possible too