
Compression and Accelerated Rendering of Time-Varying Volume Data

Kwan-Liu Ma �

University of California, Davis
Han-Wei Sheny

Ohio State University

Abstract

Visualization of time-varying volumetric data sets, which may be
obtained from numerical simulations or sensing instruments, pro-
vides scientists insights into the detailed dynamics of the phe-
nomenon under study. This paper describes our study of a coherent
solution based on quantization coupled with octree and difference
encoding, and adaptive rendering for efficient visualization of time-
varying volumetric data. Quantization is used to attain voxel-level
compression and may have a significant influence on the perfor-
mance of the subsequent encoding and visualization steps. Octree
encoding is used for spatial domain compression, and difference en-
coding for temporal domain compression. In essence, neighboring
voxels may be fused into macro voxels if they have similar values,
and subtrees at consecutive time steps may be merged if they are
identical.

The software rendering process is tailored according to the tree
structures and the volume visualization process. With the tree rep-
resentation, selective rendering may be performed very efficiently.
Additionally, the I/O costs are reduced. With these combined sav-
ings, a higher level of user interactivity is achieved. We have stud-
ied a variety of time-varying volume data sets, performed encoding
based on data statistics, and optimized the rendering calculations
wherever possible. Preliminary tests on workstations have shown
in many cases tremendous reduction by as high as 90% in both stor-
age space and inter-frame delay when compared to direct rendering
of the raw data.

1 Introduction

The ability to study time-varying phenomena helps scientists un-
derstand complex problems, but the size of time-varying data sets
not only demands excessive storage space but also presents difficult
problems for both data analysis and visualization. For example, the
size of a single-variable time-varying volume data set can be easily
in the range of hundreds of gigabytes.

Ideally, visualizing time-varying data should be done while data
is being generated, so that users receive immediate feedback on the
subject under study to achieve runtime tracking, and so the visual-
ization results can be stored rather than the much larger raw data.
However, runtime tracking is not always possible and desirable for
certain applications. For example, one may want to explore the
data set from different perspectives; or, the amount of computation
power required for real-time rendering or a special visualization
technique may not be readily available. As a result, postprocessing
of pre-calculated data remains an important requirement.

This paper presents a strategy integrating compression and ren-
dering techniques to achieve flexible and efficient rendering of

�Department of Computer Science, University of California, One
Shields Avenue, Davis, CA, 95616, ma@cs.ucdavis.edu.

yDepartment of Computer and Information Science, the Ohio State
University, 2015 Neil Avenue, Columbus, OH 43210, hwshen@cis.ohio-
state.edu.

Quantization

Octree Encoding

Difference Encoding

RenderingDisplay

Raw
Time
Varying
Data

Encoded
Time
Varying
Data

Figure 1: Overall Encoding and Rendering Process.

time-varying volume data as a postprocess. Although volume data
compression has been studied by many researchers [1, 13, 3, 4, 8],
few have considered the additional dimension of time-varying data.
With our strategy, compression is achieved using scalar quantiza-
tion along with an octree and difference encoding. By exploiting
spatial and temporal coherence in the data, neighboring voxels may
be fused into macro voxels if they have similar values, and two sub-
trees at consecutive time steps may be merged if they are identical.
Figure 1 shows the overall encoding and rendering process.

Data sets with quite different different characteristics were used
for our study. We show how each data set may be encoded accord-
ing to data statistics or user’s knowledge to achieve better space and
rendering efficiency. We also discuss how to eliminate or hide vari-
ous overheads introduced by using the tree representation. Our test
results show that in general the amount of savings we can obtain in
storage space as well as in rendering time justifies our approach.

2 Related Work

The previous work most closely related to ours is the thorough
study done by Wilhelms and Van Gelder [16] on the design of hi-
erarchical data structures for controlled compression and volume
rendering. They extend octrees and a branch-on-need (BON) sub-
division strategy [15] to handle multi-dimensional data. The basis
of their work is a hierarchical data model which is well described
in their paper. The resulting multi-dimensional tree stores a model
of the data and evaluation information about the error of the model
as well as importance of the data to control compression rate and
image quality. They also propose several evaluation metrics for per-
forming selective traversal and visualization of the encoded data.

Another closely related work is the ray-cast rendering strategy
introduced by Shen and Johnson [12] which they calldifferential

volume rendering. By exploiting the data coherency between con-
secutive time steps, they are able to reduce not only the rendering
time but also the storage space by 90% or more for their two test
data sets which are highly temporally correlated and contain spa-
tially coherentbytedata.

Based on similar concepts, Westermann [14] performs wavelet
encoding of each time step separately to generate a compressed
multiscale tree structure. Feature extraction and tracking as well
as further compression can be obtained by examining the resulting
multiscale tree structures and wavelet coefficients. Using wavelet
transform offers an underlying analysis model to characterize time-
varying data.

More recently, Shen, Chiang, and Ma [11] introduced a hier-
archical data structure, called Time-Space Partitioning (TSP) tree,
for a better utilization of both spatial and temporal coherence. In
essence, the skeleton of a TSP tree is a standard complete octree,
which recursively subdivides the volume spatially until all subvol-
umes reach a predefined minimum size. To store the temporal in-
formation, each TSP tree node itself is a binary tree. Every node
in the binary time tree represents a different time span for the same
subvolume in the spatial domain. The focus of the algorithm is to
reduce the amount of data required to complete the rendering task
and to reduce the volume rendering time. In particular, TSP trees
allow the renderer to use data from subvolumes of different spatial
and temporal resolutions. The TSP tree data structure has been also
used by Ellsworth, Chiang, and Shen [2] to facilitate large scale
volume rendering using 3D texture hardware.

This paper focuses on how quantization might affect futher com-
pression, rendering optimization, and image results of time-varying
volume data. Similar to Wilhelms and Van Gelder’s work, we use
octree encoding and error evaluation for selective traversal. But in
contrast to theirs, we apply difference encoding to the time domain
while their model treats all dimensions the same way. We favor
separating the temporal and spatial domains for encoding unless the
disparity in resolution (and coherence) between the spatial domain
and temporal domain is very small, which is unlikely in practice.

We have developed a rendering strategy taking advantage of a
tree representation of the time-varying data. Examination of the
encoded data identifies partial images built from subtrees which
have not changed and therefore may be reused in the following time
steps. This approach has also been applied by Shen, Chiang, and
Ma for the TSP tree. In contrast to Shen and Johnson’s work, we
use data sets with distinct properties which are not all highly spa-
tially and temporally coherent in order to perform a more general
study. Furthermore, we consider raw data sets (i.e. typically col-
lections of floating-point values) directly rather than the quantized
ones (i.e. byte data or integers). Finally, while Westermann’s ap-
proach is theoretically sound, there are many computational cost
issues remained to be investigated before his approach can be uti-
lized in practice.

3 Test Datasets

Four data sets were used for our study. Table 1 lists the name and
size of each data set. We chose small data sets due to the large
number of tests we needed to perform. The vortex flow data set
was obtained from pseudo-spectral simulations of coherent turbu-
lent vortex structures. The second data set derived from a parallel
three-dimensional thermal convective model and it represents the
normalized temperature distribution in a closed environment when
one side of the volume is heated by a constant heat source. The
turbulent jets data set was generated from the modeling of naturally
developing and forced jets with rectangular cross-section and differ-
ent inlet conditions. The turbulent shear flow data set was obtained
from a study of the generation and evolution of turbulent structures
in shear flows.

Table 1: Four Test Data sets.
data set time steps spatial resolution

Turbutlent Vortex Flow 100 1283float
Thermal Convection 101 1283float
Turbulent Jets 150 1283float
Turbulent Shear Flow 81 1283float

Turbulent Shear Flow

(use log scale for y)

Thermal ConvectionTurbulent Vortex Flow

Turbulent Jet Flow

Figure 2: Histograms of the data sets. Each plot shows the distribu-
tion of data values in the whole data set.

Figure 2 presents histograms generated from the four data sets.
In each plot,x axis is data value andy axis is the number of voxels.
These plots showing the distribution of data values help the fol-
lowing discussions. Figure 3 shows one selected frame from each
corresponding data set in Figure 2. Note that the use of different
transfer functions would lead to very different visualization results.

4 Compression

Data compression continues to be an important research topic be-
cause of its relevance to multimedia and web applications. Many
compression techniques have been well studied and may be ap-
plied to new applications according to data characteristics and cer-
tain requirements. There are lossless and lossy compression meth-
ods. Popular compression techniques include huffman coding,
scalar/vector quantization, differential encoding, subband coding,
and transform coding [10].

Frequently, scientists demand lossless methods to preserve the
accuracy of their original results. However, when performing data
visualization, limited by the display technology and the implemen-
tation of rendering algorithms, degradation in image quality cannot
be totally avoided. The questions are then: how lossy can the com-
pressed data be to generate the highest possible accuracy in the vi-
sualization results with the given rendering and display technology;
and how can the errors due to compression be quantified in the data
and the resulting visualization?

Volume data generally come with 8-, 16-, or 32-bit voxels. Most
volume renderer implementations use table lookup for color and
opacity mapping. Color values are represented by red, green, and
blue components, each of which is an 8-bit value. The color table
thus typically consists of 256 entries of RGB values. For voxels
represented with more than eight bits, quantization must be done
which results in lossy compression. How quantization is done de-

Turbulent Vortex Flow Thermal Convection

Turbulent Shear Flow Turbulent Jet Flow

Figure 3: One selected frame for each data set.

termines what in the data can be visualized.

4.1 Quantization

Quantization is the simplest lossy compression method. The idea of
quantization is to use a limited number of bits to represent a much
large number of distinct raw data values. The class of data sets we
consider are typically generated from numerical simulations and
quantization of the data results in a compression ratio of4 : 1 by
representing 32-bit data with only 8 bits. Quantization is a well
studied area. However, the impact of data quantization to volume
rendering has not been carefully studied.

There are uniform, non-uniform and adaptive quantizers
designed according to the characteristics of the source data. For the
simplest case, that is uniform quantization of uniformly distributed
source data valuesx, the quantization error may be measured as
themean squared error,which is

�2 =

MX
i=1

Z i�

(i�1)�

(x�
2i� 1

2
�)2f(x)dx (1)

where M is the number of quantization levels,� = (xmax �

xmin)=M and f(x) the probability density function which is
1

xmax�xmin
for uniformly distributed source data. While the gen-

eral principle of quantization is to reduce this data distortion error,
for visualization tasks, an even more important criterion is to pre-
serve and enhance particular features in the data. Data values out-
side the range of interest and the corresponding distortion error can
be ignored. With a given number of quantization levels, enhance-
ment can be achieved by allocating more levels to a particular range
of the source data values. While most renderers use uniform quanti-
zation by default, non-uniform and adaptive quantization can more
effectively minimize distortion error and enhance data for detecting
features. For volume rendering to also include an error measure for

-2

0

2

4

6

8

10

12

14

0 25 50 75 100
Time Step

max value
min value

0
1000

5000

11000

0 21 41 61 81
Time Step

max value
min value

Figure 4: Left: maximum and minimum values at each time step of
a data set from the study of the generation and evolution of turbu-
lent structures in shear flows. Early time steps contain values in a
very large dynamic range which makes quantization more difficult.
Right: maximum and minimum values at each time step of a data
set from the study of coherent turbulent vortex structures. This data
set has a small dynamic range and the distribution of values is quite
uniform which makes quantization straightforward.

the importance of data values, Equation 1 becomes

�2 =

MX
i=1

Z i�

(i�1)�

(x�
2i� 1

2
�)2f(x)�(x)dx (2)

wheref(x) characterizes a general source data distribution and
�(x) is the importance function which in this case is the opacity
transfer function provided by the user.

For example, a simple non-uniform quantizer may use a loga-
rithmic function for source data values spreading in a wide dynamic
range. A more elaborate quantizer may take source data statistics
(e.g. the probability density function) into consideration and set
quantization levels adaptively. Figure 4 plots the maximum and
minimum values for each time step of two data sets. The left one
shows values of a turbulence flow data set that consists of 81 time
steps. Such a data set must be quantized with care; otherwise, many
important features in later time steps would become invisible due to
the extremely wide dynamic range. The other data set shown on the
right behaves very differently so it can be quantized in a straight-
forward manner.

4.2 Octree Encoding

After quantizing, each time step of the quantized data is then or-
ganized hierarchically in its spatial domain using octree encoding.
Octrees are a family of data structures that represents spatial data
using recursive subdivision. They have wide application to many
graphics and visualization problems for faster searching, data pack-
ing, and algorithmic optimization. Levoy [7] used a binary octree to
skip transparent voxels for efficient volume ray casting. Laur and
Hanrahan [6] implemented a hierarchical splatting renderer using
octrees. Wilhelms and Van Gelder [15] used octrees with a branch-
on-need (BON) strategy for faster isosurface generation, and later
extended their octrees and BON strategy fork dimensions [16] of
volume data for controlled compression and rendering, as we de-
scribed previously in Section 2.

We use octree encoding to control compression, rendering, and
image quality of time-varying volume data. With octree encoding,
immediate neighboring voxels with identical values may be fused
to form a macro voxel. This fusing process is performed recursively
either in a top-down or a bottom-up manner until no more voxels or
macro voxels can be merged. For anN -time-step volume data set,
the results areN octrees. The amount of compression that can be
achieved with octree encoding is data dependent. A data set con-
taining many large, coherent structures usually can be effectively

Time n Time n+1

Figure 5: Merging Encoded Trees. Trees at consecutive time steps
contain identical subtrees so the second time step only stores a
pointer to the first time step for that subtree (red).

compressed. However, for 8-bit data, we found that further fusing
of voxels based on some error tolerance produced images gener-
ally not acceptable for visualization. Some error control issues are
discussed in [6, 16]

Our octree encoding uses a bottom-up algorithm which only vis-
its each data value one time and avoids recalculating evaluation data
and is therefore more computationally efficient. According to our
test results, the bottom-up method is about two times faster than
the top-down method. The space overhead of the octree encoding
is generally acceptable as long as many large macro voxels are cre-
ated. The maximum overhead is only aboutvb

7
wherev is the total

number of voxels in the data andb is the number of bytes used to
store information about each internal tree node. Using a linear oc-
tree, it takes as few as 1 bit for each node to indicate if it is a leaf
node or not. We also store values such as the minimum, maximum
and mean data values which characterize the data and can be used
to optimize rendering.

4.3 Difference Encoding

Like video and speech data, time-varying volume data are highly
correlated from time step to time step. Difference encoding uses
this fact to predict each sample based on its past, and to encode
and transmit the differences between the prediction and the sam-
ple value. Our further compression is built around this premise. In
essence, each individually octree encoded volume may be partially
merged with the one in the previous time step using difference en-
coding. The merging is incremental over the time dimension. Fig-
ure 5 shows how a subtree which has not changed may be repre-
sented by the one from the previous time step to save storage space.

The most interesting use of the tree structure is that when animat-
ing in the temporal domain we can waive the rendering of a subtree
that has been rendered in previous time step. The image corre-
sponding to the subtree is retrieved from the previous time step and
composited into the final image of the current time step. The as-
sociativity of theoveroperation [9] for compositing guarantees the
correctness of the composited results. The details of the rendering
step will be described in Section 5.

4.4 Optimization

For quantization, the choice of bit allocation significantly affect not
only the subsequent encoding results but also the visualization re-
sults. That is, a particular quantization can result in more voxel
fusing and thus higher compression and rendering rates. After see-
ing the corresponding visualization, if the scientist determines that
quantization needs to be redone to emphasize a particular range of
data, the octree and difference encoding must also be redone. Since
data exploration is an inherently iterative process, we want to keep

Table 2: Compression rates (due to both octree and difference en-
coding) derived from different quantizations. Note that the percent-
age of savings shown here is relative to the quantized data, not the
raw data.

Quantization Compression
Data set Method Percentage

Uniform 18
Vortex NonUniform I 71

Adaptive 19
Uniform 43

Thermal NonUniform I 28
NonUniform II 98
Adaptive 50
Uniform 91

Shear NonUniform I -7
NonUniform II 40

Jets Uniform 98

the cost of quantization and subsequent encoding as low as possi-
ble.

When the data for each time-step is very large and I/O cost be-
comes significant, a good strategy is to overlap encoding and I/O.
We have also mentioned that certain algorithmic advantages such
as using bottom-up tree construction can make a difference in the
overall cost. Finally since most of the calculations for each time
step is performed independently of other steps, multiple time-step
data can be encoded concurrently by using a cluster of workstations.

4.5 Test Resutls

Table 2 summarizes the encoded results due to different quantiza-
tions. The percentage of savings shown here is relative to the quan-
tized data, not the raw data. The vortex data set does not include ev-
ery time step of the simulation. In addition, the data values spread
across the spatial domain quite uniformly. Uniform quantization
brings out most features in the data. However, there is very lit-
tle temporal and spatial coherence in the data set and consequently
the compression rate is low. Enhancing a subset of the data values
such as the high values with non-uniform quantization increases the
compression rate.

In contrast, uniform quantization does not work very well for the
thermal data set to discern fine features in the data. Two nonuniform
quantizations focusing on different ranges of values lead to very dif-
ferent compression performance. We have also experimented with
an adaptive quantization method which decomposes the spatial do-
main into subdomains and performs local quantization first to en-
courage voxel fusing based on local data statistics. We believe this
approach will work well for some data sets, though no dramatic
improvement on compression rates were obtained for our test data
sets. For the shear flow data set, although the second nonuniform
quantization method only achieves 40% saving, it helps bring out
the most relevant structures in the data. Finally, the jets data set is
best encoded with the uniform quantization which not only gives
the highest compression rates but also brings out most features in
the data.

We found that the quantization error as calculated by Equation
2 is less than 1% for all of our data sets. The corresponding com-
putational cost for encoding is acceptable. For the test data sets, it
takes on average about 0.5 seconds per time step to quantize and 3-
5 seconds to perform octree-difference encoding on a low-end SUN
Ultra Sparc. For a data set containing 100 time steps, it takes about
a few minutes to encode the whole data set.

5 Rendering

The compression scheme leads naturally to a rendering strategy in
which only modified data are rendered. We have implemented a
ray casting volume renderer,tvvd-renderer, which takes as input
a sequence of trees, renders the first tree completely and then in
subsequent timesteps renders only the modified subtrees. This re-
quires that partial images representing the unmodified data must
be retained and composited together with the partial images cre-
ated from the modified data to create the final image at each time
step. We do this by creating a compositing tree. The composit-
ing tree is a pointer based octree which has the same structure as
the compressed octree. Each leaf of the compositing tree contains
a partial image rendered directly from the data represented by the
corresponding leaf in the compressed tree. Each interior node con-
tains a partial image which is the composite of all of its children’s
images. At each time step, modified subtrees in the compressed
octree are identified. A new compositing branch is created to repre-
sent the data and spliced into the compositing tree, replacing the old
branch. The image at the top of the new branch is composited with
its siblings and all of the ancestors are recomposited to reflect the
changes. The image at the root of the tree is the complete image.

Rendering only the modified data accounts for the largest savings
in the time domain. Much less data (i.e. only the difference between
consecutive time steps) is rendered as a result of tree merging which
produces the most significant amount of savings in rendering cost.
In addition, the time to read the encoded data is reduced in propor-
tion to the compression rate.

However, rendering from the tree structure instead of directly
the volume data incurs certain overhead. To offset this overhead,
we use several optimizations, some of which have been discussed
in [8]. First, we implemented front-to-back rendering to promote
early ray termination. This optimization has been typically imple-
mented for general ray-casting volume rendering, though the result
is highly data and transfer function dependent. To reduce excessive
matrix multiplication operations, we cache the coordinates of each
ray in the object space. We also take advantage of the information
provided by the octree structure to advance past transparent space
without rendering.

Additionally, when an octant representing a subvolume has a
constant value everywhere in its domain, the rendering of the corre-
sponding subvolume can be, though not waived, highly optimized.
Discretizing the volume rendering integral equation, the accu-
mulated color value up ton sample points on a ray is represented as:

C =

nX
i=1

C(i)�(i)

i�1Y
j=1

(1� �(j)) (3)

For a constant subvolume, since all sample points have an identical
data value and therefore identical color and opacity values, the
formulation for compositing can then be simplified to:

C =

nX
i=1

C�

i�1Y
j=1

(1� �)

=

nX
i=1

C�(1� �)i�1 (4)

With this derivation, we only need to know the number of sam-
ples that should be collected along a ray. The calculations of the
sample coordinates and trilinear interpolation of the sample values
along each ray can be completely avoided. The resulting saving is
tremendous for a data set containing many large, coherent struc-
tures.

In the octree, each leaf represents a uniform block of data which
can be rendered efficiently as discussed above. However, the
boundaries between the uniform blocks must be rendered more
carefully. To avoid the overhead of traversing the tree to obtain
boundary values, the data is initially uncompressed and the octree
information is used as a map into the volume data.

Because of opacity accumulation fine details at the front parts of
the volume often obscure the back. This means that when doing
front-to-back rendering, subtrees which represent the back portion
of the data may not be completely sampled. As an approximation,
we do not re-render the subtrees which have not changed between
time steps.

We can also improve performance by rendering data at different
resolutions in different areas of the spatial domain. Figure 6 dis-
plays visualization results generated based on this strategy. Image
(a) is a regular rendering result. Image (b) shows the result of skip-
ping pixels in image space and the blocky pattern hampers normal
perception of the image content. Images (c) and (d) show results
from various degrees of coarsening in the spatial domain. Coarsen-
ing was done by fusing voxels with high tolerance values. Image
(c) and (d) are the results of treating a block of voxels identically if
the difference between the maximum and minimum voxel values is
under some user-specified tolerance. The resulting savings in both
storage space and rendering time are quite dramatic. We achieve
40% saving for (c) and 90% for (d) in storage space. Image (c) is
almost visually indistinguishable from Image (a). Image (d) is less
visually appealing but it is good for previewing of the data.

The rendering optimization is based on a fixed viewing position.
Changing the viewing position requires that the entire compositing
tree be regenerated. On the other hand, to allow the viewer to move
randomly through the temporal domain of the data, a complete tree
must be saved at regular intervals.

5.1 Test Results

As expected, in many cases the rendering rate for a time-varying
sequence can be greatly improved by using the compressed data.
Because the large number of tests we needed to perform, all of the
timings presented are for an image size of 128�128. In this sec-
tion, when we talk of rendering times, we are referring to the total
cost of processing one image. That includes the time to read the
data, to uncompress the data values when necessary, to calculate
the gradient, update the compositing tree, render and composite.

Our ray-casting volume renderer is is reasonably optimized and
capable of generating high quality images. There are other volume
rendering algorithms such as the shear warp algorithm [5] that can
deliver superior rendering rates. Since our task is to render time-
varying data, the preprocessing calculations required by the shear
warp algorithm must be done for every time step. This require-
ment makes the shear warp algorithm less attractive. Including the
preprocessing time for each time step, a shear-warp image and a
ray-cast image could take about the same amount of time to gener-
ate. In addition, due to the use of 2-d filtering, the quality of a shear
warp image, in some case, could be less ideal.

The heart and turbulent jet flow data sets achieved the highest
compression rate and the highest increase in rendering rate. For the
turbulent jet flow data set, the tvvd-renderer renders the first image
in 2.65 seconds and the subsequent images at an average of 0.55
seconds, which represents an increase of 80% in the rendering rate
between the first and consecutive images and an 88% increase in
the overall rendering rate. For the heart data set, we saw a 93%
increase in the overall rendering rate.

Figure 7 shows three renderings of the turbulent jet flow data set.
The baseline renderer renders the full data set from the volume data
at each time step. The tvvd-renderer uses all of the optimizations
discussed in Section 5. The tvvd-renderer without octree optimiza-

(a) (b)

(c) (d)

Figure 6: Rendering data at various resolution in various space. (a)
regular rendering. (b) rendering at lower resolution in image space.
(c) rendering at slightly lower resolution in the data domain which
produces about 40% saving in storage space and 10% in rendering
time. (d) rendering at much lower resolution in the data domain
which produces about 90% saving in storage space and 30% in ren-
dering time.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Step

0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
im

e
in

 S
ec

on
ds

Total Rendering Cost

Baseline Renderer
TVVD−Renderer without Octree Optimizations
TVVD−Renderer with Octree Optimizations

Figure 7: Rendering cost for turbulent jets data set. The time is the
total time to process, including reading encoded data from disk, un-
encoding when necessary, calculating gradient, rendering and com-
positing. Overall performance gain is mostly due to tree merging
while octree optimization does achieve some improvement.

0.0 20.0 40.0 60.0
Time Step

0.0

5.0

10.0

15.0

20.0

T
im

e
in

 S
ec

on
ds

Total Rendering Cost

Baseline Renderer − Uniform Quantization
TVVD−Renderer − Uniform Quantization
Baseline Renderer − NonUniform Quantization
TVVD−Renderer − NonUniform Quantization

Figure 8: Rendering results for the turbulent shear flow data set.

0.0 20.0 40.0 60.0
Time Step

100

102

104

106

N
um

be
r

of
 B

lo
ck

s

Turbulent Shear Uniform

1 Voxel Block
8 Voxel Block
64 Voxel Block
512 Voxel Block
4096 Voxel Block
32768 Voxel Block

0.0 20.0 40.0 60.0
Time Step

100

102

104

106

Turbulent Shear Non−Uniform

Figure 9: Number of blocks in turbulent shear flow data set.

tions uses the encoded data and builds the compositing tree, how-
ever it renders transparent space and uniform space as if they were
nonuniform. Due to the transfer functions used, the turbulent jet
flow data set has large regions of transparent space and also large
blocks of non-transparent uniform space. This is the best case for
octree optimization, but the figure shows that while some of the
speedup is a result of using the octree optimizations, the majority
of the speedup occurs because of the tree merging.

While the rendering rate increases dramatically when the com-
pression rate is high, it is dependent upon the number of large
blocks (4096 voxels or larger) which can be compressed. When
a single voxel changes, the surrounding voxels are re-rendered.
Thus, compression resulting from merging 1 voxel blocks or 8-
voxel blocks is not useful at all in the rendering. Compression re-
sulting from merging 64- and 512-voxel blocks has some effect, but
the types of data sets which have many small matching blocks and
few large matching blocks typically require more overhead to use
the octree than can be gained by using the compression information.

An example of this is the turbulent shear data set. Figure 8 shows
the rendering times for this data set using two different forms of
quantization. Figure 9 shows the number of large matching blocks
at each time step. Notice that at time step 30 in the uniform quan-
tization method, the number of 32768-voxel blocks increases and
there is an immediate response in the rendering time. The compres-
sion using the nonuniform quantization method is the result of a

0.0 10.0 20.0 30.0
Time Step

0.0

5.0

10.0

15.0
T

im
e

In
 S

ec
on

ds
Total Rendering Cost

TVVD−Renderer − Uniform
TVVD−Renderer − NonUniform Low Data Range
TVVD−Renderer − NonUniform High Data Range

Figure 10: Rendering results Thermal Convection data set.

large number of small matching blocks, not a small number of large
matching blocks. The renderer cannot take advantage of the com-
pression, and the rendering rate is consistently lower. Generally, if
the data are compressed by less than 50% in the time domain, un-
less many large subtrees were merged, little rendering performance
gain can be obtained. This is consistent with the results reported
in [12].

Quantization can be used effectively to focus on different fea-
tures in the data and can affect the number of matching blocks at
each time step. By choosing the area of interest carefully, a scien-
tist is able to control not only the level of feature enhancement but
also the compression and rendering times of the data. The thermal
convection data set has interesting features which can be empha-
sized by nonuniform quantization. Figure 10 shows the effects of
different methods of quantization on the rendering time.

The vortex data set can also be compressed well with non-
uniform quantization, but the compression results from many small
voxel blocks and not any larger blocks. Therefore, although the
data set is compressed, the rendering time increases.

The core rendering code for our baseline volume renderer is the
same as that used for the tvvd-renderer. It is a very basic renderer
with few optimizations. Replacing the core code with a more op-
timized renderer will increase the rendering rate of both renderers.
The tvvd-renderer can be configured to stop at any depth in the tree
and render immediately. The minimum number of nodes which
may be rendered is an 8-voxel block. Increasing the minimum num-
ber of nodes decreases the overhead associated with the octree but
also decreases the number of matching blocks which do not have to
be rerendered. The optimizations which we have incorporated into
the octree renderer such as moving past transparent blocks without
rendering and using front to back rendering to encourage early ter-
mination of rays are highly dependent upon the opacity maps. Us-
ing different opacity maps can dramatically change the rendering
times. Rendering at 256�256 required approximately two to three
times as long. For larger image size or higher interaction, the tree
branches can be distributed to multiple processors to be rendered.

6 Conclusions

Visualizing time-varying data will continue to be important and
challenging. We have investigated how time-varying volume data

may be organized to facilitate direct volume rendering and demon-
strated some promising results. In general, the selection of encod-
ing and rendering strategies should depend very much on data res-
olution, statistics and visualization requirements.

We found that in many cases the amount of savings in stor-
age space and rendering time can be tremendous while the result-
ing visualization results stay visually indistinguishable from high-
resolution ones. This suggests that unless the display resolution
and visualization requirements are high, we should take advantage
of compression and multiresolution rendering to increase visualiza-
tion efficiency. The savings in storage space also reduces the I/O
required by the renderer. With large data sets with a large number
of time steps, this reduction can be a significant part of the overall
savings.

An important goal of our study is to allow a more interactive
user interrogation with the data. This requires that the images be
presented to the user as rapidly as possible. Although we do not see
large savings when the cost of quantization and rendering are com-
bined, by preprocessing we can achieve near interactive viewing
rates.

Our results also showed that utilizing both the spatial and tempo-
ral coherence existing in a time-varying dataset can be very effec-
tive in reducing the data size and rendering time. While the work
presented in this paper is based on the use of a sequence of 3D oc-
trees, we believe a more flexible data structure for 4D datasets is
needed. We are currently investigating on the use of 4D octrees,
or called 16-trees, and TSP trees for further optimizing the quanti-
zation and rendering process. Our preliminary study has showed
that 16-trees is suboptimal in capturing the temporal coherence.
This is because in 16-trees, the temporal domain is tightly cou-
pled with other spatial dimensions during the hierarchical subdi-
vision. For instance, for a32 � 32 � 32 volumetric dataset with
32 time steps, the first level of subdivision divides each dimension
in half and thus subvolumes of this level have a spatial dimension
of 16 � 16 � 16 and the time interval of sixteen. This implies
that for the16 � 16 � 16 subvolumes, temporal coherence can be
detected only in the interval of sixteen time steps but not the oth-
ers. In addition, subvolumes with only temporal coherence but no
spatial coherence, can not be detected at all using 16-trees as the
spatial and temporal coherence are always considered together. It
appeared to us that the TSP tree data structure can be more effec-
tive, although the work presented in [11] is primarily focused on
improving rendering speed but not data compression. We plan to
further the study of uinsg TSP trees for effective quantization and
data compression.

Other future work includes the development of application-
specific techniques and taking the grid structures (curvilinear, un-
structured, etc.) into consideration. We will investigate how the or-
der of encoding calculations would impact the overall compression
and rendering performance. In addition, we will study the charac-
teristics of time-varying computational fluid dynamics data sets and
continue developing appropriate compression and rendering meth-
ods.

7 Acknowledgments

This research was supported in part by the National Science Foun-
dation under contract ACI 9983641 (CAREER Award), and through
the Large Scientific and Software Data Set Visualization (LSSDSV)
program under contract ACI 9982251. It was also supported in
part by the National Aeronautics and Space administration under
NASA Contract No. NAS1-97046 while the authors in residence at
the Institute for Computer Applications in Science and Engineering
(ICASE). The authors would like to thank Peggy Li, John Shebalin,
Deborah Silver and Robert Wilson for making test data sets avail-
able.

References

[1] CHIUEH, T. Z., YANG, C. K., HE, T., PFISTER, H., AND
KAUFMAN , A. Integrated Volume Compression and Visual-
ization. InProceedings of the Visualization ’97 Conference
(October 1997), pp. 329–336.

[2] ELLSWORTH, D., CHIANG, L., AND SHEN, H.-W. Acceler-
ating time-varying hardware volume rendering using tsp trees
and color-based error metrics. InProceedings of 2000 Sym-
posium on Volume Visualization(2000), ACM SIGGRAPH.

[3] FOWLER, J. E.,AND YAGEL, R. Lossless Compression of
Volume Data. InProceedings of the 1994 Symposium on Vol-
ume Visualization(October 1994).

[4] FREUND, J.,AND SLOAN, K. Accelerated volume rendering
using homogeneous region encoding. InProceedings of the
Visualization ’97 Conference(October 1997), pp. 191–196.

[5] L ACROUTE, P., AND LEVOY, M. Fast volume rendering us-
ing a shea-warp factorization of the viewing transformation.
In SIGGRAPH ’94 Conference Proceedings(1994), ACM
SIGGRAPH, pp. 451–458.

[6] L AUR, D., AND HANRAHAN , P. Hierarchical Splatting: A
Processive Refinement Algorithm for Volume Rendering. In
Proceedings of SIGGRAPH ’91(1991).

[7] L EVOY, M. Efficient Ray Tracing of Volume Data.ACM
Transactions on Graphics 9, 3 (July 1990).

[8] NING, P.,AND HESSELINK, L. Vector Quantization for Vol-
ume Rendering. InProceedings of the Visualization ’93 Con-
ference(October 1993).

[9] PORTER, T., AND DUFF, T. Compositing Digital Images.
Proceedings of SIGGRAPH ’84 18, 3 (July 1984).

[10] SAYOOD, K. Introduction to Data Compression. Morgan
Kaufmann Publishers, Inc., 1996.

[11] SHEN, H.-W., CHIANG, L., AND MA, K. A fast volume
rendering algorithm for time-varying field using a time-space
partitioning (tsp) tree. InProceedings of Visualization ’99
(1999), IEEE Computer Society Press, Los Alamitos, CA.

[12] SHEN, H.-W., AND JOHNSON, C. Differential Volume Ren-
dering: A Fast Volume Visualization Technique for Flow An-
imation. InProceedings of the Visualization ’94 Conference
(October 1994), pp. 180–187.

[13] WESTERMANN, R. A Multiresolution Framework for Vol-
ume Rendering. InProceedings of the 1994 Symposium on
Volume Visualization(October 1994).

[14] WESTERMANN, R. Compression time rendering of time-
resolved volume data. InProceedings of the Visualization ’95
Conference(1995), pp. 168–174.

[15] WILHELMS, J., AND VAN GELDER, A. Octrees for Faster
Isosurface Generation.ACM Transactions on Graphics 11, 3
(July 1992).

[16] WILHELMS, J., AND VAN GELDER, A. Multi-Dimensional
Trees for Controlled Volume Rendering and Compression. In
Proceedings of the 1994 Symposium on Volume Visualization
(October 1994).

