

Visual Thinking for Design Colin Ware

How much do we see?

- We do not have the entire visual world in conscious awareness
- We apprehend only a tiny fraction of information in our surrounding
 - Just the right amount of information
- But we can sample the world around us very rapidly with swift eye movement (1/10 second)
- Although we have very little attention capacity
- A good use of our cognition ability is very important to keep our brain small

Visual Thinking and Queries

- Visual thinking the process of allocating attention
- We are conscious of the field of information that we have rapid access rather than the entire world
 - Allows us to do a better graphics design
- Visual thinking consists of a series of acts of attention, driving eye movements and turning our pattern finding circuits
- The act of attention is called visual query search for pattern

The Apparatus

- Eye digital camera
- Light sensitive cones three colors
- Brain pixels are concentrated in a central region called fovea to process visual detail (100 pts on the top of a pin)
- Half of our visual brain is to process about 5 % of the visual world
- Eyeball muscle moves about 900 degree/second (saccade)

The Apparatus

- Eye digital camera
- Light sensitive cones three colors
- Brain pixels are concentrated in a central region called fovea to process visual detail (100 pts on the top of a pin)
- Half of our visual brain is to process about 5 % of the visual world
- Eyeball muscle moves about 900 degree/second (saccade)

The Apparatus

- Eye digital camera
- Light sensitive cones three colors
- Brain pixels are concentrated in a central region called fovea to process visual detail (100 pts on the top of a pin)
- Half of our visual brain is to process about 5 % of the visual world
- Eyeball muscle moves about 900 degree/second (saccade)

The Act of Perception

- Two waves of neural activity
 - Information driven wave
 - Attention driven wave
- Bottom up and top down perception

Bottom Up Perception

- Low level features -> pattern -> object
 - Optical nerve V1 cortex : feature detection edges and contours;
 color; motion;
 - Features are put together to form patterns textures, long contours,
 (Gelstat psychology)
 - Visual objects (three in visual working memory at a time)
 - Not all visual processing in done in visual working memory
 - They are done in parallel by many parts instead
 - The real power lies in pattern finding

The Act of Perception

- Top-down (attention)
 - Driven by the need to accomplish some goals
 - Search for a color then the color feature will be enhanced
 - Eye movement: fast at first, fixation was brief,
 - How does our brain where to look?

Design Implication

- The design should allow visual queries to be processed rapidly and correctly for the cognitive tasks that the display is intended to support
 - Understand the intended cognitive tasks and visual queries

What are the cognitive tasks?

How We Solve Problems?

- Nested Loops
 - Outer loop deals with generality (construct a set of steps to solve the problem)
 - Inner loops deal with details (visual search, eye movement, find patterns, etc.)

