Visualizing Networks and Trees

Arrange Networks and Trees

Arrange Networks and Trees

Node-Link Diagrams
Connection Marks
✓ NETWORKS ✓ TREES

→ Adjacency Matrix
Derived Table

✓ NETWORKS ✓ TREES

Node-Link Diagrams for Trees

- The most common visual representation
 - Nodes: point marks; Links: line marks

Triangular vertical layout - vertical spatial location to show the depth

Spline radial layout — depth is shown as distance to the center

Larger Trees

Rectangular horizontal layout

Radial bubble tree
- each subtree is a circle

Node-Link Diagrams for Networks

- Also known as graphs
- Distance is measured as hops
- It is often used to analyzed the topology – direct and indirect connections between nodes
 - Finding all possible paths from one node to another
 - Finding the shortest paths between two nodes
 - Finding all the adjacent nodes from a target node
 - Finding nodes that act as bridges between two groups of nodes

Visualizing Networks

- Force-directed layout
- Matrix
- Enclosure

Force-Directed Layout

- Nodes are placed according to a simulation of physical forces
 - Links act like springs
 - Nodes push each other away
- Nodes are placed randomly initially and their positions are updated iteratively
- The goal is to minimize the number of distractions such as edge crossing and node overlap

Nodes and links can be colored coded with different sizes to represent

attributes

Force-Directed Layout

- Major weakness scalability
- Sometimes the nodes never settle down
- Multilevel drawing can help

20 K nodes – hairball problem

Idiom	Force-Directed Placement
What: Data	Network.
How: Encode	Point marks for nodes, connection marks for links.
Why: Tasks	Explore topology, locate paths.
Scale	Nodes: dozens/hundreds. Links: hundreds. Node/link density: L < 4N

Matrix Views for Networks

- Nodes are labeled in rows and columns and each cell in the matrix represents whether there is a direct link
- Matrix cells can be encoded with different colors
- For undirected networks, i.e., links have no directions, only half of the matrix is needed

Matrix Views for Networks

Idiom	Adjacency Matrix View
What: Data	Network.
What: Derived	Table: network nodes as keys, link status between two nodes as values.
How: Encode	Area marks in 2D matrix alignment.
Scale	Nodes: 1000. Links: one milllion.

Costs and Benefits

- Node-link diagrams
 - Intuitive for small networks
 - Good for understanding network topology and substructures
 - Major weakness in handling large networks
 - Link density: number of links vs. nodes
 - Hard to handle networks with link density > 4
- Matrix views
 - Can handle large networks effectively
 - High predictability in the required screen space
 - More stable views: add a node/link won't change the view much
 - Roles/Columns can be re-ordered to show structures
 - It is easier to find a node in the networks : check the labels
 - Weakness: harder to interpret, often requires training
 - Weakness: lack of support for analyzing network topology

Costs and Benefits

- Node-link diagrams
 - Intuitive for small networks
 - Good for understanding network topology and substructures

Containment: Hierarchy Marks

The focus is to show the hierarchical structure

Node-link diagrams only show pair-wise

relationships

Example: Treemaps

Treemaps

Treemaps

More visual encoding of hierarchies