Data Abstraction

What can be visualized

- Basic data set types: tables, networks, fields, and geometry
- <u>Data types</u>: items, attributes, links, positions, and grids
- Data sets can be static or dynamic (streaming)
- Types of an <u>attribute</u>:
 - Categorical
 - Ordered: Ordinal, Quantitative
- Important Properties of data
 - Semantics: meaning of data
 - Types: mathematical or structural interpretation
 - Defined in the attribute level, data level and dataset level
- Additional information <u>Metadata</u>

Data Set and Data Type

Four types of <u>data set</u>

And a data set can contain <u>data</u> of the following <u>types</u>

Items At	tributes	Links	Positions	Grids
----------	----------	-------	-----------	-------

Data Set and Data Type

Tables Networks & **Fields** Geometry Clusters, Sets, Lists Trees Items Items (nodes) Grids Items Items **Positions Attributes Positions** Links **Attributes** Attributes

Attribute Types

Ordering direction

Attribute Semantics

- Key vs. value semantics
- The key attribute acts as an index to retrieve the data value
- Different data set types will have different ways to define the keys

Flat Table An item

ID	Name	Age	Shirt Size	Favorite Fruit
1	Amy	8	É	Apple
2	Basil	7	S	Pear
3	Clara	9	M	Durian
4	Desmond	13	L	Elderberry
5	Ernest	12	\mathbf{L}	Peach
6	Fanny	10	S	Lychee
7	George	9	M	Orange
8	Hector	8	L	Loquat
9	Ida	10	M	Pear
10	Amy	12	M	Orange

Can be used as a key

May not be a good choice of key

Multi-dimensional Tables

- A key has multiple attributes and needs to be a unique combination of values
- It is not always clear what attributes are keys and what are values
 - Figuring out independent and dependent variables (cause-effect analysis)

Field Data

- Field data are mostly seen in scientific applications (temperatures, pressures, etc)
- Values are defined on grids, where the positions of the grid points are the key

• Value attributes: scalar, vector, tensor

Attributes

• Scalars (e.g. density), Vectors (e.g. momentum), , Tensors (e.g. stress tensor)

Temporal Semantics

- Any kind of information that is related to time
- Temporal data are often more complex to deal with
- Temporal attributes can be either keys or values
- Time-varying data often means time is the key attribute
 - e.g Time series data