

What is compositing anyway?

- A method for combining two or more images in a way that approximates the

$\underline{21 / 2 \mathrm{D}}$ rendering : scenes have to be disjoint in depth

Why compositing?

- Special effects (shake hands with
important people...)
- Share the load of rendering
- Render translucent objects (translucent polygons, volume rendering, etc)

How to composite?

- A separate component other than RGB is needed to represent the coverage of en element at a pixel
- This component is called alpha channel
- alpha $=0$-> zero coverage
- alpha = 1 -> full coverage

Alpha Channel

- The value of alpha can be in $[0,1]$ to indicate the extent of the coverage
(or how opaque the object is)
- A pixel's 'color' is represented by a quadruple (r, g, b, α)
$(0,0,0,1)=$ opaque black
$(0,0,0,0)=$ transparent

Alpha Channel (2)

- How to represent a pixel that is half covered by a full red object?
-> $(1,0,0,0.5)$?
the red contribution is - 1* 0.5
- If we want to composite a foregrond color $C_{f}(1,0,0)$ over a background color Cb_{b} then we do $C=(1,0,0) * 0.5+(1-0.5) * C b$

Pre-multiplied alpha

Given $\mathrm{C}=\underline{\mathrm{Cf}_{\mathrm{f}} \alpha}+(1-\alpha) * \mathrm{Cb}$
Every time we want to perform composite, we need to multiply the color by its alpha
-> why not just pre-multiplied the color components by alpha and stored that way?
$(R, G, B, \alpha) \rightarrow(R \alpha, G \alpha, B \alpha, \alpha)$
This way, we have $C=C f+(1-\alpha) C b$
($\mathrm{r}, \mathrm{g}, \mathrm{b}, \alpha$) premultiplied quadruple $->(\mathrm{r} / \alpha, \mathrm{g} / \alpha, \mathrm{b} / \alpha, \alpha)$ real color

Compositing Algebra

- Foreground over background is only one of the compositing (the simplest) methods.
- What are the formula for all possible kind of compositing (A over B, A under B, A in $B . .$.$) ?$
- The issues is to understand and formulate the interplay between the alpha values of two input picture

Compositing Algebra (2)
What is alpha any way?

1. Represents the opaqueness of semitransparent objects. With alpha $=\alpha$, the object will let (1- α) of backgound color go through

Compositing Algebra (3)

2. Represents the amount of pixel area covered by the object. (1-a) of the pixel is not covered, and a of the pixel is covered.
(this method is better for understanding this paper)

Compositing Algrbra (4)

Assumption: If B has alpha value α_{B}, then the area A is

Also divided as $\alpha_{\text {в }}$ and 1 - $\alpha_{\text {в }}$ And vice versa

Compositing Arithmetic

Basic Idea:
To composite A an B : Each input picture source (A or B) will survive in its own matte (α), and the fraction (FA) of its own matte not

So final color $\mathrm{C}_{0}=$ contrib. $\mathrm{A}+$ contrib. B
co $=\alpha_{0} \alpha_{A F A C A}+\alpha_{B} F B C B$
$\alpha_{A F A}+\alpha_{B F B}$

Compositing Arithmetic (3)

$\mathrm{Co}=\mathrm{cAFA}+\mathrm{cB} \mathrm{FB}$ (note that Co is also alpha premultiplied color)
Example 1: Now let's look at 'Over'
We know $F A=1, F B=1-\alpha_{A}$
So we have $\mathrm{Co}=\mathrm{cA}+\mathrm{cB}(1-\alpha \mathrm{A})$
Example 2: 'Under'
$F A=1-\alpha_{B} \quad F B=1$
So $C 0=c A\left(1-\alpha_{B}\right)+c B$

