The initial pixel color = Black opaque

Back-to-Front compositing :
use ‘under’ operator

Hackgrond ‘under’ C
( ‘under’ ¢}
d under

Cout =Cin * (1-a(x)) + C(x)* a(x)

[
C
C

> 0 =CcA (1- AB) +cB

Or you can use ‘Front-to-Back’
Compositing formula

Front-to-Back compositing :
use ‘over’ operator

C = backgrond ‘over’ C1

C=C'over’' C2

C=C'over' C3

Cont=—0Cin +CONEDAAXM Qi) Qoe - Qi L DN wrq i
ot a0 F—atin—aout—am—+—a0g=—etifty

= A method for combining two or more
images in a way that approximates the
intervisibility of the scenes

2 % D rendering : scenes have to be disjoint in depth

= Special effects (shake hands with
important people...)

= Share the load of rendering

= Render translucent objects (translucent
polygons, volume rendering, etc)

= A separate component other than RGB

is needed to represent the coverage of en
element at a pixel

= This component is called alpha channel
= alpha = 0 -> zero coverage
= alpha = 1 -> full coverage




$ How to composite? (2)

= 1 bit matte
Foreground ﬁ
o[ | [0 [0
R G B 1-bit mask
Background ‘ ‘ ‘ cfifaf=1
cb c =
R G B chif af=0

i Alpha (_Jhan nel

= The value of alpha can be in [0,1] to indicate
the extent of the coverage

(or how opaque the object is)
= A pixel's ‘color’ is represented by a
quadruple (r,g,b,a)

(0,0,0,1) = opaque black
(0,0,0,0) = transparent

o Alpha Channel (2)

= How to represent a pixel that is half covered
by a full red object?

-> (1,0,0,0.5) ?
the red contribution is- 1* 0.5

= If we want to composite a foregrond
color Cf (1,0,0) over a background color Cb
then we do C = (1,0,0) * 0.5 + (1-0.5)*Cb
i.,e. C=Cfrra+(1l-a)*Cp

* Pre-mq_l___’g__i__plied alpha

GivenC=Cf*a+(1-a)*Cb

Every time we want to perform composite, we

need to multiply the color by its alpha

-> why not just pre-multiplied the color
components by alpha and stored that way?
(R,G,B,a) -> (Ra, Ga, Ba, a)

This way, we have C=Cf+ (1-a) Cbh
(r,g,b,a) premultiplied quadruple -> (r/a, g/a, b/a, a)
real color

$ Compositing Algebra

= Foreground over background is only one of
the compositing (the simplest) methods.

= What are the formula for all possible kind of
compositing (A over B, A under B, Ain B...)?

= The issues is to understand and formulate the
interplay between the alpha values of two
input picture

o Compositing Algebra (2)

What is alpha any way?

1. Represents the opaqueness of semitransparent
objects. With alpha = a, the object will let (1-a)
of backgound color go through

Screen door

Smaller alpha Larger alpha
(more transparent) ~ (more opaque)




$ Compositing Algebra (3)

2. Represents the amount of pixel area covered
by the object. (1-a) of the pixel is not
covered, and a of the pixel is covered.

(this method is better for understanding this paper)

aa

Assumption: If B has alpha
value A, then the area A is
Also divided asdsand 1 -as
And vice versa

AandB Band A

AandB

* Possible Compositing of A,B

7 hand B (AB) . N
All the possible compositing of
A and B can be enumerated based
on the value in the four regions
(0, A, B, AB)

AandB (A) Band A (B)

B over A:

K Aover B:
- (0, A,B,A)

Aand B (0) (0, AB,B)

Basic Idea:
To composite A an B: Each input picture source (A or B)

will survive in its own matte (@), and
the fraction (F A) of its own matte not
/aA covered in the output picture

Example: A survives in a A, and (1- a B)
So final color Co = contrib. A + contrib. B

SAFACA—EBFBCR-
AAFA+ABFB

Co =
ao

$ Compositing Arithmetic (2)

Co = ao ArFACAT+aBFBEs
AAFA+aABFB

since o= AAFA+aABFB

cA =CAQA and cB =CB A A (cA, cB are alpha premultiplied color)

Co = cAFA + cB FB (note that Co is also alpha premultiplied color)

Co = cAFA + cB FB (note that Co is also alpha premultiplied color)
Example 1: Now let's look at ‘Over’

We know FA = 1, FB = 1- A A

So we have Co = cA + cB (1-AA)

Example 2: ‘Under’

FA=1aB FB=1

So Co = cA (1- AB) + cB




* Compositing for volume rendering

Or you can use ‘Front-to-Back’
Compositing formula

Front-to-Back compositing :
use ‘over’ operator

C = clear ‘over’ C1
C=C‘over C2
C=C‘over’ C3 /fOo = cA + cB (1-AA) |

—

i Compositing for volume renderingy

The initial pixel color = Black opaque

Back-to-Front compositing :
use ‘under’ operator

Hackgrond ‘under’ C
( ‘under’ C
d ‘gnder

[eNeNe]
I




