
OpenGL Transformation Composition

  A global modeling transformation matrix
 (GL_MODELVIEW, called it M here)
 glMatrixMode(GL_MODELVIEW)

  The user is responsible to reset it if necessary
 glLoadIdentity()
 -> M = 1 0 0
 0 1 0
 0 0 1

OpenGL Transformation Composition

  Matrices for performing user-specified
transformations are multiplied to the model view
global matrix

  For example,
 1 0 0 1

 glTranslated(1,1 0); M = M x 0 1 0 1

 0 0 1 0
 0 0 0 1

  All the vertices P will go through the transformation
(modeling transformation)

 P’ = M x P

Transformation Pipeline

 Object
Local Coordinates

 Object
World Coordinates

 Modeling
transformation

…

OpenGL Transformation

  OpenGL postmultiplies each new transformation matrix
 M = M x Mnew

  Example: perform translation, then rotation
 0) M = Identity
 1) translation T(tx,ty,0) -> M = M x T(tx,ty,0)
 2) rotation R(θ) -> M = M x R(θ)
 3) Now, transform a point P -> P’ = M x P
 = T(tx, ty, 0) x R(θ) x P Wrong!!!

  When use OpenGL, we need to think of
object transformations as moving its
local coordinate frame

  All the transformations are performed
relative to the current coordinate frame
origin and axes

OpenGL Transformation

Translate Coordinate Frame

Translate (3,3)?

Translate Coordinate Frame (2)

Translate (3,3)?

Rotate Coordinate Frame

Rotate 30 degree?

30 degree

Scale Coordinate Frame

Scale (0.5,0.5)?

Compose Transformations

(7,9)

45
o

Answer:

1.  Translate(7,9)
2.  Rotate 45
3.  Scale (2,2)

Transformations?

OpenGL Transformation

  Think of transformation as moving coordinate
frames

  Call OpenGL transformation functions in that
order

  OpenGL will actually perform the
transformations in the reverse order

Transform Coordinates

Coordinate system transformation
  Transform an object from coordinate system C1 with

the origin at (x1,y1) or (x1,y1,z1) in 3D, to coordinate
system C2 with the origin (x2,y2) or (x2,y2,z1) in 3D

(x2,y2)

(x1,y1)

1.  Find the transformation sequence to move C2
 to C1 (so C2 will align with C1)

•  Move the origin of C2 to coincide with the
 origin of C1
•  Rotate the basis vectors of C2 so that they
 coincide wih C1’s.
•  Scale the unit if necessary

2.  Apply the above transformation sequence to the
 object in the opposite order

c1 c2

