The OpenGL
Rendering Pipeline

CSE 781 Winter 2010

Han-\Wei Shen

Brief History of OpenGL

Originated from a proprietary API called Iris GL from
Silicon Graphics, Inc.

Provide access to graphics hardware capabilities at the
lowest possible level that still provides hardware
Independence

The evolution is controlled by OpenGL Architecture
Review Board, or ARB.

OpenGL 1.0 API finalized in 1992, first implementation in
1993

In 2006, OpenGL ARB became a workgroup of the
Khronos Group

10 revisions since 1992

OpenGL Evolution

e 1.1 (1997): vertex arrays and texture objects

A (
e 1.2 (1998): 3D textures

e 1.3 (2001): cubemap textures, compressed
textures, multitextures

e 1.4 (2002): mipmap generation, shadow map
textures, etc

e 1.5 (2003): vertex buffer object, shadow
comparison functions, occlusion queries,
non-power-of-2 textures

):
):

OpenGL Evolution

e 2.0 (2004): vertex and fragment shading
(GLSL 1.1), multiple render targets, etc

e 2.1 (2006): GLSL 1.2, pixel buffer objects, etc

e 3.0 (2008): GLSL 1.3, deprecation model,
etc

e 3.1 (2009): GLSL 1.4, texture buffer objects,
move much of deprecated functions to ARB
compatible extension

e 3.2 (2009)

OpenGL Extensions

e New features/functions are marked with
prefix

e Supported only by one vendor
NV _float buffer (by nvidia)

e Supported by multiple vendors
EXT framebuffer _object

e Reviewed by ARB
ARB _ depth texture

e Promoted to standard OpenGL API

Deprecation Model, Contexts,
and Profiles

¢ Redundant and In-efficient functions are
deprecated — to be removed in the future

glBegin(), glEnd()
e OpenGL Contexts — data structures where
OpenGL stores the state information used for

rendering
Textures, buffer objects, etc

e Profile — A subset of OpenGL functionality
specific to an application domain

Gaming, computer-aided design, embedded programs

The Rendering Pipeline

e The process to generate two-dimensional images
from given virtual cameras and 3D objects

e The pipeline stages implement various core graphics
rendering algorithms

e \Why should you know the pipeline?
Understand various graphics algorithms
Program low level graphics systems
Necessary for programming GPUs
Help analyze the performance bottleneck

The Rendering Pipeline

e The basic construction —
three conceptual stages

e Each stage is a pipeline and
runs in parallel

e Graphics performance is
determined by the slowest
stage

e Modern graphics systems:
software:

hardware:

Application

NS

Geometry

Iy

Rasteriazer

|

&
Image

The Rendering Pipeline

Application

Stage

3D Triangles

Geometry
Stage

For each

triangle vertex:

-+ Transform
3D position
into
screen position

=+ Compute
attributes

2D Triangles

=

Rasterization
Stage

For each
triangle:

- Rasterize
triangle

-+ |nterpolate
vertex attributes

across triangle

-~ Shade
pixels

-+ Resolve
visibility

The Geometry Stage

&5 (local space polygons)

eye Space

Modeling and Viewing

screen space

—

|

Viewport
Mapping

Vertex Lighting

—

Perspective

a

Divide

(screen space lit polygon vertices)

Projection

clip space

<— Clipping

to rasterizer stage

Transformation Pipeline

e Another view of the graphics pipeline

Local (Object) ModelView
—> —> Eye Space

Space transformation

[Perspectlve } : e : [PFOJGC’[IOH J

devide transformatio

U

|
NDC space | [—» [ﬁ;ﬁjﬁgd } —> | Window space

Normalized Device Coordinates

Different Spaces

e Local space

A space where you define the vertex coordinates, normals,
etc. This is before any transformations are taking place

These coordinates/normals are multiplied by the OpenGL
modelview (VM) matrix into the eye space

Modelview matrix: Viewing transformation matrix (V)

multiplied by modeling transformation matrix (M), i.e.,
GL _MODELVIEW =V * M

OpenGL matrix stack is used to allow different modelview
matrices for different objects

Different Spaces (cont’d)

e Eye space
Where per vertex lighting calculation is occurred
Camera is at (0,0,0) and view’s up direction is by
default (0,1,0)
Light position is stored in this space after being
multiplied by the OpenGL modelview matrix

Vertex normals are consumed by the pipeline in
this space by the lighting equation

Different Spaces (cont’d)

e Clip Space
After projection and before perspective divide
Clipping against view frustum done in this space
-W <= X <= W,; -W <=Y <=W,; -W <=Z <=W;
New vertices are generated as a result of clipping

The view frustum after transformation is a parallelepiped
regardless of orthographic or perspective projection

e Perspective Divide
Transform clip space into NDC space

Divide (x,y,z,w) by w where w = z/-d (d=1 in OpenGL so w
= _Z)

Result in foreshortening effect

Different Spaces (cont’d)

e \Window Space

Map the NDC coordinates into the window

X and Y are integers, relative to the lower left corner of
the window

Z are scaled and biased to [0,1]
Rasterization is performed in this space

The geometry processing ends in this space

The Geometry Stage

e Transform coordinates and normal
Model->world
World->eye
Normalize the normal vectors
Compute vertex lighting
Generate (if necessary) and transform texture coordinates
Transform to clip space (by projection)
Assemble vertices into primitives <
Clip against viewing frustum <
Divide by w (perspective divide if applies)
Viewport transformation
Back face culling

A

Introduce vertex
dependences ®

The Rasterizer Stage

e Per-pixel operation: assign colors to the pixels in the frame buffer
(a.k.a)

e Main steps: E —> (frame buffer)

Setup
Sampling (convert a primitive to fragments)

Texture lookup and Interpolation (lighting, texturing, z values, etc)
Color combinations (illumination and texture colors)

Fogging

Other pixel tests (scissor, alpha, stencil tests etc)

Visibility (depth test)

Blending/compositing/Logic op

The Rasterization Stage

e Convert each primitive into fragments (not
pixels)

e Fragment: transient data structures

position (x,y); depth; color; texture coordinates;
etc om o

O
I:|I|:|I

——> EOO0E M|

e Fragments from the rasterized polygons are
then selected (z buffer comparison for
instance) to form the frame buffer pixels

The Rasterization Stage

e Two main operations

Fragment selection: generate one fragment for
each pixel that is intersected by the primitive

Fragment assignment: sample the primitive
properties (colors, depths, etc) for each fragment -

nearest neighbor continuity, linear interpolation,
etc

Polygon Scan Conversion

e The goal is to compute the scanline-primitive intersections

e OpenGL Spec does not specify any particular algorithm to
use

e Brute Force: try to intersect each scanline with all edges as
we go from ymin to ymax
e We can do better

Find ymin and ymax for each edge and only test the edge
with scanlines in between

For each edge, only calculate the intersection with the ymin;

calculate dx/dy; calculate the new intersection as y=y+1, x
+dx/dy

Change x=x+dx/dy to integer arithmetic (such as using
Bresenham'’s algorithm)

Rasterization steps

e Texture interpolation
e Color interpolation

e Fog (blend the fog color with the fragment color based on the
depth value)

e Scissor test (test against a rectangular region)
e Alpha test (compare with alpha, keep or drop it)

e Stencil test(mask the fragment depending on the content of the
stencil buffer)

e Depth test (z buffer algorithm)
e Alpha blending
e Dithering (make the color look better for low res display mode)

Overview of PC Graphics
Hardware

Evolution of the PC hardware graphics pipeline:
- 1995-1998: Texture mapping and z-buffer
- 1998: Multitexturing
- 1999-2000: Transform and lighting
. 2001: Programmable vertex shader
- 2002-2003: Programmable pixel shader
- 2004: Shader model 3.0 and 64-bit color support

1995-1998: texture mapping

and z buffer

CPU

Application / Geometry Stage

2D Triangles

Textures

System Memory

-

-

Bus
(PCI)

GPU

Rasterization Stage

2D Triangles

Video Memory

PCIl: Peripheral Component Interconnect

3dfx’s Voodoo

Texture
Unit

Textures

Raster

Operations
Unit

Frame
Buffer

Texture Mapping

Triangle Mesh textured with Base Texture

Raster Operations Unit

Rasterizer

Fragment

Screen Position (x, y)

Texture
Unit

tested against
scissor rectangle

Alpha Value a

tested against

Color (r, g, b)

tested against
reference value

z-buffer value at (x, y) Color Buffer

(visibility test) Alpha Blending m
blended with

color buffer value at (x, y):

Raster
Operations stencil buffer value

Unit at (x, y)
tested against
reference value

Fragments >~ Scissor Test

Alpha Test | Frame Buffer

Stencil Test Stencil Buffer

Z Test Z-Buffer

~4

K, * Colorg, + K4 * Colorg,
(src = fragment

dst = color buffer)

1998: multitexturing

CPU GPU

Application /| Geometry Stage Rasterization Stage

. Multitexture Rastfar
Rasterizer . Operations
Lol Unit

2D Triangles
Textures Bus [0 Triangles Textures
System Memory Video Memory

« AGP: Accelerated Graphics Port
< NVIDIA’s TNT, ATI’s Rage

Multitexturing

Base Texture modulated by Light Map

from UT2004 (c)
Epic Games Inc.
Used with permission

1999-2000: transform and
lighting

CPU GPU “Fixed Function Pipeline”
Application Geometry Stage Rasterization Stage
St
e Transform : Raster
Rasterizer o Operations
and Combiner perat
Unit
Lighting
l Unit
3D Triangles
Textures | Bus [3p Triangles
(AGP)
System
Memory Video Memory

« Register Combiner: Offers many more texture/color combinations
< NVIDIA’s GeForce 256 and GeForce2, ATlI’s Radeon 7500, S3’s Savage3D

Transform and Lighting (TnL)
unit

Transform and Lighting Unit

Transform

e

Lighting

Programmable GPUs

e So far we only discuss fixed graphics pipe
Fixed T&L algorithms
Fixed Fragment processing steps

e New GPU trends — programmable vertex,
geometry, and fragment processing

Ine

2001: programmable vertex

shader e

CPU GPU
Application Geometry Stage Rasterization Stage
Stage

Vertex Shader Rasterizer Register Raster
I -
(no flow control) (with Z-Cull) Combiner Opel.lj':ii:;ons

Texture
Shader

3D Triangles
Text) Frame
S Bus 3D Triangles Textures
(AGP) Buffer
System
Memory Video Memory

« Z-Cull: Predicts which fragments will fail the Z test and discards them
« Texture Shader: Offers more texture addressing and operations
< NVIDIA’s GeForce3 and GeForced4 Ti, ATlI’'s Radeon 8500

Vertex Program

Texture ﬁ

\ Fixed vertex processing
Fragment (OpenGL 1.2)

A4

Display

Application Transform
A Lighting
Geometry >
Tex. coord.
Rasterization Clipping

Vertex Program

Clipping

i

Programmable
vertex processing

Vertex Program

e Used to be only assembly language interface to T&L
unit (2002)
GPU instruction set to perform all vertex math
Reads an untransformed, unlit vertex
Creates a transformed vertex
Optionally creates
Lights a vertex
Creates texture coordinates
Creates fog coordinates
Creates point sizes

e High level programming language APIs are available
(GLSL, Cg, HLSL, etc)

2002-2003: programmable
pixel shader

CPU GPU
Application Geometry Stage Rasterization Stage
Stage

- Raster
Vertex Shader Rasterizer Pixel Shader

(static and dynamic . (static Operations
flow control) [ERNE flow control only) Unit

Texture
l Unit

3D Triangles
B Bus 3D Triangles Textures
(AGP)
System
Memory Video Memory

« MRT: Multiple Render Target
« NVIDIA’s GeForce FX, ATI’s Radeon 9600 to 9800 and X600 to X800

N

Fragment Programs

Application

A

Geometry

A4

Texture Address

Texture Filter

Combiner

Rasterization

Fog

A4

Texture

A

/

Fragment

A4

Display

Alpha, s, z tests

Blending

U

Fragment
program

Fog

Alpha, s, z tests

Blending —*

]

Fixed fragment pipeline

Programmable fragment
processing

2004: shader model 3.0 and 64-
bit colors

CPU GPU
Application Geometry Stage Rasterization Stage
Stage

: Raster
Vertex Shader B Pixel Shader

(static and dynamic . (static and dynamic Operations
flow control) (EREEC flow control) Unit

Texture
l Unit

3D Triangles
e Bus 3D Triangles Textures
(PCle)
System
Memory Video Memory

« PCle: Peripheral Component Interconnect Express
< NVIDIA’s GeForce 6 Series (6800 and 6600)

PCle

. Like AGP:

. Uses a serial connection — Cheap, scalable
< Uses a point-to-point protocol — No shared bandwidth

<« Unlike AGP:

< General-purpose (not only for graphics)
. Dual-channels: Bandwidth is available in both direction

« Bandwidth: PCle = 2 x AGP8x

Evolution of Performance

10 000

® Mpixels/s

1000

Mvertices/s

Mtransistors

100

10

1995 1999 2001 2003 2004 /

ollg

The Future

Unified general programming model at primitive,
vertex and pixel levels

Scary amounts of:
- Floating point horsepower

{

{

< Video memory
- Bandwidth between system and video memory

Lower chip costs and power requirements to make
3D graphics hardware ubiquitous:

- Automotive (gaming, navigation, heads-up displays)
- Home (remotes, media center, automation)
- Mobile (PDAs, cell phones)

¢

