
The OpenGL
Rendering Pipeline

CSE 781 Winter 2010

Han-Wei Shen

Brief History of OpenGL
  Originated from a proprietary API called Iris GL from

Silicon Graphics, Inc.
  Provide access to graphics hardware capabilities at the

lowest possible level that still provides hardware
independence

  The evolution is controlled by OpenGL Architecture
Review Board, or ARB.

  OpenGL 1.0 API finalized in 1992, first implementation in
1993

  In 2006, OpenGL ARB became a workgroup of the
Khronos Group

  10 revisions since 1992

OpenGL Evolution

  1.1 (1997): vertex arrays and texture objects
  1.2 (1998): 3D textures
  1.3 (2001): cubemap textures, compressed

textures, multitextures
  1.4 (2002): mipmap generation, shadow map

textures, etc
  1.5 (2003): vertex buffer object, shadow

comparison functions, occlusion queries,
non-power-of-2 textures

OpenGL Evolution

  2.0 (2004): vertex and fragment shading
(GLSL 1.1), multiple render targets, etc

  2.1 (2006): GLSL 1.2, pixel buffer objects, etc
  3.0 (2008): GLSL 1.3, deprecation model,

etc
  3.1 (2009): GLSL 1.4, texture buffer objects,

move much of deprecated functions to ARB
compatible extension

  3.2 (2009)

OpenGL Extensions

  New features/functions are marked with
prefix

  Supported only by one vendor
  NV_float_buffer (by nvidia)

  Supported by multiple vendors
  EXT_framebuffer_object

  Reviewed by ARB
  ARB_depth_texture

  Promoted to standard OpenGL API

Deprecation Model, Contexts,
and Profiles
  Redundant and In-efficient functions are

deprecated – to be removed in the future
  glBegin(), glEnd()

  OpenGL Contexts – data structures where
OpenGL stores the state information used for
rendering
  Textures, buffer objects, etc

  Profile – A subset of OpenGL functionality
specific to an application domain
  Gaming, computer-aided design, embedded programs

The Rendering Pipeline
  The process to generate two-dimensional images

from given virtual cameras and 3D objects
  The pipeline stages implement various core graphics

rendering algorithms
  Why should you know the pipeline?

  Understand various graphics algorithms
  Program low level graphics systems
  Necessary for programming GPUs
  Help analyze the performance bottleneck

The Rendering Pipeline
  The basic construction –

three conceptual stages
  Each stage is a pipeline and

runs in parallel
  Graphics performance is

determined by the slowest
stage

  Modern graphics systems:
 software:

 hardware:

Application

Geometry

Rasteriazer

Image

The Rendering Pipeline

The Geometry Stage

Modeling and Viewing Vertex Lighting Projection

Clipping Perspective
Divide

Viewport
Mapping

to rasterizer stage

(local space polygons)

(screen space lit polygon vertices)

eye space

clip space
screen space

Transformation Pipeline

  Another view of the graphics pipeline

Local (Object)
Space

ModelView
transformation

Eye Space

Projection
transformation Clip Space

Perspective
devide

NDC space
Scale and
translate Window space

Normalized Device Coordinates

Different Spaces
  Local space

  A space where you define the vertex coordinates, normals,
etc. This is before any transformations are taking place

  These coordinates/normals are multiplied by the OpenGL
modelview (VM) matrix into the eye space

  Modelview matrix: Viewing transformation matrix (V)
multiplied by modeling transformation matrix (M), i.e.,
GL_MODELVIEW = V * M

  OpenGL matrix stack is used to allow different modelview
matrices for different objects

Different Spaces (cont’d)

  Eye space
  Where per vertex lighting calculation is occurred
  Camera is at (0,0,0) and view’s up direction is by

default (0,1,0)
  Light position is stored in this space after being

multiplied by the OpenGL modelview matrix
  Vertex normals are consumed by the pipeline in

this space by the lighting equation

Different Spaces (cont’d)
  Clip Space

  After projection and before perspective divide
  Clipping against view frustum done in this space

  -W <= X <= W; -W <=Y <=W; -W <=Z <=W;
  New vertices are generated as a result of clipping
  The view frustum after transformation is a parallelepiped

regardless of orthographic or perspective projection
  Perspective Divide

  Transform clip space into NDC space
  Divide (x,y,z,w) by w where w = z/-d (d=1 in OpenGL so w

= -z)
  Result in foreshortening effect

Different Spaces (cont’d)

  Window Space
  Map the NDC coordinates into the window

  X and Y are integers, relative to the lower left corner of
the window

  Z are scaled and biased to [0,1]
  Rasterization is performed in this space

  The geometry processing ends in this space

The Geometry Stage
  Transform coordinates and normal

  Model->world
  World->eye

  Normalize the normal vectors
  Compute vertex lighting
  Generate (if necessary) and transform texture coordinates
  Transform to clip space (by projection)
  Assemble vertices into primitives
  Clip against viewing frustum
  Divide by w (perspective divide if applies)
  Viewport transformation
  Back face culling

Introduce vertex
dependences 

The Rasterizer Stage
  Per-pixel operation: assign colors to the pixels in the frame buffer

(a.k.a scan conversion)

  Main steps:
  Setup
  Sampling (convert a primitive to fragments)
  Texture lookup and Interpolation (lighting, texturing, z values, etc)
  Color combinations (illumination and texture colors)
  Fogging
  Other pixel tests (scissor, alpha, stencil tests etc)
  Visibility (depth test)
  Blending/compositing/Logic op

(frame buffer)

The Rasterization Stage
  Convert each primitive into fragments (not

pixels)
  Fragment: transient data structures

  position (x,y); depth; color; texture coordinates;
etc

  Fragments from the rasterized polygons are
then selected (z buffer comparison for
instance) to form the frame buffer pixels

The Rasterization Stage
  Two main operations

  Fragment selection: generate one fragment for
each pixel that is intersected by the primitive

  Fragment assignment: sample the primitive
properties (colors, depths, etc) for each fragment -

 nearest neighbor continuity, linear interpolation,
etc

Polygon Scan Conversion
  The goal is to compute the scanline-primitive intersections
  OpenGL Spec does not specify any particular algorithm to

use
  Brute Force: try to intersect each scanline with all edges as

we go from ymin to ymax
  We can do better

  Find ymin and ymax for each edge and only test the edge
with scanlines in between

  For each edge, only calculate the intersection with the ymin;
calculate dx/dy; calculate the new intersection as y=y+1, x
+dx/dy

  Change x=x+dx/dy to integer arithmetic (such as using
Bresenham’s algorithm)

Rasterization steps
  Texture interpolation
  Color interpolation
  Fog (blend the fog color with the fragment color based on the

depth value)
  Scissor test (test against a rectangular region)
  Alpha test (compare with alpha, keep or drop it)
  Stencil test(mask the fragment depending on the content of the

stencil buffer)
  Depth test (z buffer algorithm)
  Alpha blending
  Dithering (make the color look better for low res display mode)

Overview of PC Graphics
Hardware

1995-1998: texture mapping
and z buffer

Texture Mapping

Raster Operations Unit

1998: multitexturing

Multitexturing

1999-2000: transform and
lighting

Transform and Lighting (TnL)
unit

Programmable GPUs

  So far we only discuss fixed graphics pipeline
  Fixed T&L algorithms
  Fixed Fragment processing steps

  New GPU trends – programmable vertex,
geometry, and fragment processing

2001: programmable vertex
shader

Vertex Program

Application

Geometry

Rasterization

Texture

Fragment

Display

Transform

Lighting

Tex. coord.

Clipping

Fixed vertex processing
(OpenGL 1.2)

Vertex Program

Clipping

Programmable
vertex processing

Vertex Program
  Used to be only assembly language interface to T&L

unit (2002)
  GPU instruction set to perform all vertex math
  Reads an untransformed, unlit vertex
  Creates a transformed vertex
  Optionally creates

 Lights a vertex
 Creates texture coordinates
 Creates fog coordinates
 Creates point sizes

  High level programming language APIs are available
(GLSL, Cg, HLSL, etc)

2002-2003: programmable
pixel shader

Fragment Programs

Application

Geometry

Rasterization

Texture

Fragment

Display

Texture Address

Texture Filter

Combiner

Fog

Alpha, s, z tests

Blending

Fog

Alpha, s, z tests

Blending

Fragment
program

Fixed fragment pipeline
Programmable fragment
processing

2004: shader model 3.0 and 64-
bit colors

