ﬁ 2D Transformations

‘_L 2D Transformation

= Given a 2D object, transformation is to

change the object’s
= Position (translation)
= Size (scaling)
= Orientation (rotation)
= Shapes (shear)
= Apply a sequence of matrix multiplication to

the object vertices

‘.L Point representation

= We can use a column vector (a 2x1 matrix) to
represent a 2D point | X
Y

= A general form of /inear transformation can
be written as:

X'=ax+ by +c

=<

(e WallY
H —x0

=< X

OR

(@)

y=dx+ey+f

‘_L Translation

= Re-position a point along a straight line

= Given a point (x,y), and the translation
distance (tx,ty)

The new point: (X, y) Xy")
X =X+ tx i
Y =y+ty 00y) /tx ’

OR PP = P 4+ T where P’=‘x:‘ p = ‘X‘T=‘;)/(‘
Y Y

‘L 3x3 2D Translation Matrix

X| = X + tx
@ Use 3 x 1 vector
X' 1 0 tx X
y| = 0 1 ty|* |y
1 0 0 1 1

= Note that now it becomes a matrix-vector multiplication

‘_L Translation

= How to translate an object with multiple

vertices?

[]

Translate individual

vertices

=

,,,,,,

’ ’

‘_L 2D Rotation

= Default rotation center: Origin (0,0)

[]
’
4

’W . 6> 0 : Rotate counter clockwise

[]
’
4

ﬂ . 6< 0 : Rotate clockwise

‘-L Rotation

(x,y) -> Rotate about the origin by 0 |

> (X} Y)

How to compute (X', y') ?

0

(X7y")

e (xvy)

X = rcos (¢p) Yy =rsin ()
X'=rcos(p+6) y=rsin(¢+0)

* Rotation

X = rcos(¢) y=rsin (¢)
X"= rcos(p+6) y=rsin (¢ +06) 0. o (x,y)

(X7y")

¢
X" = rcos (¢ +06) >
= ﬂ cos(0) —- sin(0)

= X cos(0) —y sin(0)
v

rsin (¢ + 0)
ﬂ cos(0) +->sin(e)

y cos(0) + x sin(0)

* Rotation
! (X;y")

Matrix form?

14

X
y

14

_ | cos(6) -sin(6)
| sin(@) cos()

X
y

3 x 37?

‘L 3x3 2D Rotation Matrix

X’ cos(B6) -sin(B)| | x Xy
y' sin(0) cos(0)| |y
0 o (Xy)
! L
X" jcos(6) =-sin(6) O X
y’ sin(0) cos(6) O y
1 0 0 1 1

‘_L Rotation

= How to rotate an object with multiple

vertices?

[]

=

Rotate individual
Vertices

-~ -~

[’

~ o~

’ ’

* 2D Scaling

Scale: Alter the size of an object by a scaling factor

(Sx, Sy), i.e.

s =

(1,1)

(2,2)

Sx=2,Sy =2

Sx O
0 Sy

(2,2)

i

(4/4)

‘.L 2D Scaling

(1,1)

(2,2)

Sx=2,Sy =2

(2,2)

(4/4)

= Not only the object size is changed, it also moved!!

= Usually this is an undesirable effect

= We will discuss later (soon) how to fix it

ﬁ 3x3 2D Scaling Matrix

Sx O X
0 Sy‘ ‘y‘

!

Sx 0 0
0 Sy 0 |*
0 0 1

o

|—-<‘ ><‘
=< X

‘_L Put it all together

= [ranslation: | x| = | x| 4+ | tx
y y ty
= Rotation: X'| _|cos(B) -sin(6)
y’ sin(6) cos(0)
= Scaling: x| _ | Sx 0
y’ 0 Sy

X

X
Y

X
Y

‘_L Or, 3x3 Matrix representations

= Translation: | x' 1 0 tx X
y'| = 0 1 ty| * |y
1 0 0 1 1
= Rotation: X' | _|cos(6) -sin(6) O X
y’ sin(0) cos(6) O] *|vy
1 0 0 1 1
_ X' Sx 0 0 X
= Scaling: y | =1 0 Sy O0]|*|y
1 0 0 1 1

Why use 3x3 matrices?

‘.L Why use 3x3 matrices?

= S0 that we can perform all transformations
using matrix/vector multiplications

= This allows us to pre-multiply all the matrices
together

= The point (X,y) needs to be represented as
(x,y,1) -> this is called Homogeneous
coordinates!

* Shearing
— L

= Y coordinates are unaffected, but x cordinates
are translated linearly with y

= | hatis: X 1 h o X
=y =y yi= |0 1 0|*y
= X =X+Yy*h 1 0 0 1 1

i Shearing iny

L

ocounu
o~ 0O
l—noo
=< X

—

=< X

Interesting Facts:
= A 2D rotation is three shears
= Shearing will not change the area of the object

= Any 2D shearing can be done by a rotation, followed
by a scaling, and followed by a rotation

i Rotation Revisit

= | he standard rotation matrix is used to

rotate about the origin (0,0)

cos(6)
sin(0)
0

-sin(0)
cos(6)
0

0

0
1

)

©

7
’
’
’
/
’
’
/ -V
/ -
’ _A-
r_--
»
»

= What if I want to rotate about an

arbitrary center?

=

‘_L Arbitrary Rotation Center

= [0 rotate about an arbitrary point P (px,py)
by 6:
= Translate the object so that P will coincide with
the origin: T(-px, -py)
= Rotate the object: R(6)
= Translate the object back: T(px,py)

(p/>,<,-,_py) @

©

, 1

‘_L Arbitrary Rotation Center

= Translate the object so that P will coincide with the
origin: T(-px, -py)

= Rotate the object: R(6)

= Translate the object back: T(px,py)

s Put in matrix form: T(px,py) R(6) T(-px, -py) * P

X 10 px cos(0) -sin(6) O 1 0 -px| |X
vii= (01 py sin(6) cos(6) O 01 -py| |y
1 00 1 0 0 1 00 1 1

‘_L Scaling Revisit

= [The standard scaling matrix will only
anchor at (0,0)

Sx 0 0 ,@
0 Sy O —
0 0 1 &

= What if I want to scale about an arbitrary
pivot point? @

0

‘_L Arbitrary Scaling Pivot

= [0 scale about an arbitrary pivot point P
(PX,py):
= Translate the object so that P will coincide with the
origin: T(-px, -py)
= Rotate the object: S(sx, sy)
= Translate the object back: T(px,py)

@ (PX,PY) @

‘_L Affine Transformation

= Translation, Scaling, Rotation, Shearing are all affine
transformation

= Affine transformation — transformed point P’ (X’,y’) is
a linear combination of the original point P (x,y), i.e.

X' mll ml2 mil3 X

v =1m21 m22 m23 y
1 0 0 1 1

= Any 2D affine transformation can be decomposed
into a rotation, followed by a scaling, followed by a
shearing, and followed by a translation.
Affine matrix = translation x shearing x scaling x rotation

‘.L Composing Transformation

= Composing Transformation — the process of applying
several transformation in succession to form one
overall transformation

= If we apply transform a point P using M1 matrix first,
and then transform using M2, and then M3, then we
have:

(M3 x (M2 x (M1 xP)) =M3xM2xM1xP
|

(pre-multiply) | '
M

‘_L Composing Transformation

= Matrix multiplication is associative
M3 xM2x M1 =(M3xM2)xM1=M3x(M2xM1)

= Transformation products may not be commutative A xB !'=B

X A
= Some cases where AXxB=BxA
A B
translation translation
scaling scaling
rotation rotation
uniform scaling rotation

(sx = sy)

* Transformation order matters!

= Example: rotation and translation are not
commutative

Translate (5,0) and then Rotate 60 degree
/

OR

Rotate 60 degree and then translate (5,0)??

’ . Rotate and then translate !!

penGL.

‘-L How OpenGL does it?

= OpenGL's transformation functions are
meant to be used in 3D

= No problem for 2D though — just ignore
the z dimension
= Translation:

» glTranslatef(d)(tx, ty, tz) -> glTranslatef
(d)tx,ty,0) for 2D

penGL.

* How OpenGL does it?

= Rotation:
= glRotatef(d)(angle, vx, vy, vz) ->
glRotatef(d)(angle, 0,0,1) for 2D

y Y (vx, vy, vz) — rotation axis J

-

» X > X

You can imagine z is pointing out
of the slide

GrentiL.

i OpenGL Transformation Composition

= A global modeling transformation matrix

(GL_MODELVIEW, called it M here)
glMatrixMode(GL_MODELVIEW)

= The user is responsible to reset it if necessary
glLoadIdentity()

->M=100
010
001

GrentiL.

i OpenGL Transformation Composition

= Matrices for performing user-specified
transformations are multiplied to the model view

global matrix

= For example,
101

glTranslated(1,10); M = M x |01 1
001

= All the vertices P defined within glBegin() will first go
through the transformation (modeling
transformation)

PP= MxP

CrentL

* Transformation Pipeline

Object Modeling Object _
Local Coordinates transformation World Coordinates

