2D Transformations

2D Transformation

- Given a 2D object, transformation is to change the object's
- Position (translation)
- Size (scaling)
- Orientation (rotation)
- Shapes (shear)
- Apply a sequence of matrix multiplication to the object vertices

Point representation

- We can use a column vector (a $2 x 1$ matrix) to represent a 2D point

$$
\left\lvert\, \begin{aligned}
& x \\
& y
\end{aligned}\right.
$$

- A general form of linear transformation can be written as:

$$
\begin{array}{ll}
x^{\prime}=a x+b y+c \\
y^{\prime}=d x+e y+f & O R \\
& \left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{c}
x \\
y \\
1
\end{array}\right|
\end{array}
$$

Translation

- Re-position a point along a straight line
- Given a point (x, y), and the translation distance (tx,ty)

The new point: (x^{\prime}, y^{\prime})

$$
\begin{aligned}
& x^{\prime}=x+t x \\
& y^{\prime}=y+t y
\end{aligned}
$$

OR $P^{\prime}=P+T$ where $P^{\prime}=\left|\begin{array}{l}\mathrm{x}^{\prime} \\ \mathrm{y}^{\prime}\end{array}\right| \mathrm{p}=\left|\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right| \mathrm{T}=\left|\begin{array}{l}\mathrm{tx} \\ \mathrm{ty}\end{array}\right|$

3x3 2D Translation Matrix

$$
\begin{aligned}
\left|\begin{array}{c}
x^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right|= & \left|\begin{array}{c}
\mathrm{x} \\
\mathrm{y}
\end{array}\right|
\end{aligned} \begin{aligned}
& +\left|\begin{array}{c}
\mathrm{tx} \\
\mathrm{ty}
\end{array}\right| \\
& \square \text { Use } 3 \times 1 \text { vector } \\
\left|\begin{array}{c}
x^{\prime} \\
\mathrm{y}^{\prime} \\
1
\end{array}\right|= & \left|\begin{array}{ccc}
1 & 0 & \mathrm{tx} \\
0 & 1 & \text { ty } \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right|
\end{aligned}
$$

- Note that now it becomes a matrix-vector multiplication

Translation

- How to translate an object with multiple vertices?

Translate individual vertices

2D Rotation

- Default rotation center: Origin $(0,0)$

$\theta>0$: Rotate counter clockwise

$\theta<0$: Rotate clockwise

Rotation

(x, y) -> Rotate about the origin by θ

$$
\longrightarrow\left(x^{\prime}, y^{\prime}\right)
$$

How to compute (x^{\prime}, y^{\prime}) ?

$$
\begin{aligned}
& x=r \cos (\phi) y=r \sin (\phi) \\
& x^{\prime}=r \cos (\phi+\theta) \quad y=r \sin (\phi+\theta)
\end{aligned}
$$

Rotation

$$
\begin{aligned}
x & =r \cos (\phi) \quad y=r \sin (\phi) \\
x^{\prime} & =r \cos (\phi+\theta) \quad y=r \sin (\phi+\theta) \\
x^{\prime} & =r \cos (\phi+\theta) \\
& =r \cos (\phi) \cos (\theta)-r \sin (\phi) \sin (\theta) \\
& =x \cos (\theta)-y \sin (\theta) \\
y^{\prime} & =r \sin (\phi+\theta) \\
& =r \sin (\phi) \cos (\theta)+r \cos (\phi) \sin (\theta) \\
& =y \cos (\theta)+x \sin (\theta)
\end{aligned}
$$

Rotation

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=y \cos (\theta)+x \sin (\theta)
\end{aligned}
$$

Matrix form?

$\left|\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right|=\left|\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right|\left|\begin{array}{l}x \\ y\end{array}\right|$
$3 \times 3 ?$

3x3 2D Rotation Matrix

$$
\begin{aligned}
& \left|\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right|\left|\begin{array}{l}
x \\
y
\end{array}\right| \\
& \left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{l}
x \\
y \\
1
\end{array}\right|
\end{aligned}
$$

Rotation

- How to rotate an object with multiple vertices?

2D Scaling

Scale: Alter the size of an object by a scaling factor (Sx, Sy), i.e.

$$
\begin{aligned}
& x^{\prime}=x \cdot S x \\
& y^{\prime}=y \cdot S y
\end{aligned} \quad \longrightarrow\left|\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
S x & 0 \\
0 & S y
\end{array}\right|\left|\begin{array}{l}
x \\
y
\end{array}\right|
$$

2D Scaling

- Not only the object size is changed, it also moved!!
- Usually this is an undesirable effect
- We will discuss later (soon) how to fix it

3x3 2D Scaling Matrix

$$
\begin{aligned}
& \left|\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
S x & 0 \\
0 & \text { Sy }
\end{array}\right|\left|\begin{array}{l}
x \\
y
\end{array}\right| \\
& \text { 】 } \\
& \begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\left|=\left|\begin{array}{ccc}
S x & 0 & 0 \\
0 & S y & 0 \\
0 & 0 & 1
\end{array}\right| *\right| \begin{array}{l}
x \\
y \\
1
\end{array}
\end{aligned}
$$

Put it all together

- Translation: $\left|\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right|=\left|\begin{array}{l}x \\ y\end{array}\right|+\left|\begin{array}{c}\mathrm{tx} \\ \mathrm{ty}\end{array}\right|$
- Rotation: $\left|\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right|=\left|\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right| *\left|\begin{array}{l}x \\ y\end{array}\right|$
- Scaling:

$$
\left|\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
S x & 0 \\
0 & S y
\end{array}\right| *\left|\begin{array}{l}
x \\
y
\end{array}\right|
$$

Or, 3x3 Matrix representations

- Translation:

$$
\left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & \text { tx } \\
0 & 1 & \text { ty } \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{c}
x \\
y \\
1
\end{array}\right|
$$

- Rotation:

$$
\begin{aligned}
& \left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{c}
x \\
y \\
1
\end{array}\right| \\
& \left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
S x & 0 & 0 \\
0 & S y & 0 \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{l}
x \\
y \\
1
\end{array}\right|
\end{aligned}
$$

Why use 3×3 matrices?

Why use 3×3 matrices?

- So that we can perform all transformations using matrix/vector multiplications
- This allows us to pre-multiply all the matrices together
- The point (x, y) needs to be represented as $(x, y, 1)->$ this is called Homogeneous coordinates!

Shearing

- Y coordinates are unaffected, but x cordinates are translated linearly with y
- That is:
- $y^{\prime}=y$
- $x^{\prime}=x+y$ *h

$\left.$| x |
| :--- |
| y |
| 1 |\(\left|=\left|\begin{array}{lll}1 \& h \& 0

0 \& 1 \& 0

0 \& 0 \& 1\end{array}\right| *\right|\)| x |
| :--- |
| y |
| 1 | \right\rvert\,

Shearing in y

$$
\left|\begin{array}{l}
x \\
y \\
y
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 0 \\
g & 1 & 0 \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{l}
x \\
y \\
1
\end{array}\right|
$$

Interesting Facts:

- A 2D rotation is three shears
- Shearing will not change the area of the object
- Any 2D shearing can be done by a rotation, followed by a scaling, and followed by a rotation

Rotation Revisit

- The standard rotation matrix is used to rotate about the origin $(0,0)$

- What if I want to rotate about an arbitrary center?

Arbitrary Rotation Center

- To rotate about an arbitrary point P (px,py) by θ :
- Translate the object so that P will coincide with the origin: $T(-p x,-p y)$
- Rotate the object: $\mathrm{R}(\theta)$
- Translate the object back: T(px,py)

Arbitrary Rotation Center

- Translate the object so that P will coincide with the origin: T(-px, -py)
- Rotate the object: $\mathrm{R}(\theta)$
- Translate the object back: T(px,py)
- Put in matrix form: $\quad \mathrm{T}(\mathrm{px}, \mathrm{py}) \mathrm{R}(\theta) \mathrm{T}(-\mathrm{px},-\mathrm{py}) * \mathrm{P}$

$$
\left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & \mathrm{px} \\
0 & 1 & \mathrm{py} \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{ccc}
1 & 0 & -p x \\
0 & 1 & -p y \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{l}
x \\
y \\
1
\end{array}\right|
$$

Scaling Revisit

- The standard scaling matrix will only anchor at (0,0)

Sx	0	0
0	Sy	0
0	0	1

- What if I want to scale about an arbitrary pivot point?

Arbitrary Scaling Pivot

- To scale about an arbitrary pivot point P (px,py):
- Translate the object so that P will coincide with the origin: T(-px, -py)
- Rotate the object: S(sx, sy)
- Translate the object back: T(px,py)

Affine Transformation

- Translation, Scaling, Rotation, Shearing are all affine transformation
- Affine transformation - transformed point $\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ is a linear combination of the original point $P(x, y)$, i.e.

$$
\left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
m 11 & m 12 & m 13 \\
m 21 & m 22 & m 23 \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{l}
x \\
y \\
1
\end{array}\right|
$$

- Any 2D affine transformation can be decomposed into a rotation, followed by a scaling, followed by a shearing, and followed by a translation.
Affine matrix $=$ translation x shearing x scaling x rotation

Composing Transformation

- Composing Transformation - the process of applying several transformation in succession to form one overall transformation
- If we apply transform a point P using M1 matrix first, and then transform using M2, and then M3, then we have:

$$
(\mathrm{M} 3 \times(\mathrm{M} 2 \times(\mathrm{M} 1 \times \mathrm{P})))=\underset{(\text { pre-multiply })}{\mathrm{M} 3 \times \mathrm{M} 2 \times \mathrm{M} 1 \times \mathrm{P}}
$$

Composing Transformation

- Matrix multiplication is associative
$\mathrm{M} 3 \times \mathrm{M} 2 \times \mathrm{M} 1=(\mathrm{M} 3 \times \mathrm{M} 2) \times \mathrm{M} 1=\mathrm{M} 3 \times(\mathrm{M} 2 \times \mathrm{M} 1)$
- Transformation products may not be commutative $\mathrm{A} \times \mathrm{B}$!= B x A
- Some cases where $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$

A	B
translation	translation
scaling	scaling
rotation	rotation
uniform scaling	rotation
(sx=sy)	

Transformation order matters!

- Example: rotation and translation are not commutative

How OpenGL does it?

- OpenGL's transformation functions are meant to be used in 3D
- No problem for 2D though - just ignore the z dimension
- Translation:
- glTranslatef(d)(tx, ty, tz) -> glTranslatef (d)tx,ty,0) for 2D

How OpenGL does it?

- Rotation:
- glRotatef(d)(angle, vx, vy, vz) -> glRotatef(d)(angle, 0,0,1) for 2D

You can imagine z is pointing out of the slide

OpenGL Transformation Composition

- A global modeling transformation matrix
(GL_MODELVIEW, called it M here)
glMatrixMode(GL_MODELVIEW)
- The user is responsible to reset it if necessary glLoadIdentity()

$$
\left.\begin{array}{rl}
->M= & 1
\end{array} \begin{array}{rl}
1 & 0 \\
0 & 1
\end{array}\right)
$$

OpenGL Transformation Composition

- Matrices for performing user-specified transformations are multiplied to the model view global matrix
- For example,
glTranslated $(1,10) ; \quad M=M \times\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right|$
- All the vertices P defined within glBegin() will first go through the transformation (modeling transformation)

$$
P^{\prime}=M \times P
$$

Transformation Pipeline

