
Illumination and Shading

Illumination (Lighting)

  Model the interaction of light with surface
points to determine their final color and
brightness

  OpenGL computes illumination at vertices

illumination

Shading

  Apply the lighting model at a set of points
across the entire surface

Shading

Illumination Model

  The governing principles for computing the
illumination

  A illumination model usually considers:
  Light attributes (light intensity, color, position,

direction, shape)
  Object surface attributes (color, reflectivity,

transparency, etc)
  Interaction among lights and objects (object

orientation)
  Interaction between objects and eye (viewing dir.)

Illumination Calculation

  Local illumination: only consider the light, the
observer position, and the object material properties

  Example: OpenGL

θ	

Illumination Models

  Global illumination: take into account the
interaction of light from all the surfaces in the scene

  Example: Ray Tracing (CIS681)

object 1

object 2 object 3

object 4

Basic Light Sources

Point light Directional light

Spot light

Light intensity can be
independent or
dependent of the
distance between object
and the light source

sun

Simple local illumination

  The model used by OpenGL – consider three
types of light contribution to compute the
final illumination of an object
  Ambient
  Diffuse
  Specular

  Final illumination of a point (vertex) =
 ambient + diffuse + specular

Ambient light contribution

  Ambient light (background light): the light that is
scattered by the environment

  A very simple approximation of global illumination

  Independent of the light position,object orientation,
observer’s position or orientation – ambient light has
no direction

object 1

object 2 object 3

object 4

Ambient lighting example

Ambient light calculation

  Each light source has an ambient light contribution
(Ia)

  Different objects can reflect different amounts of
ambient (different ambient reflection coefficient Ka,

 0 <= Ka <= 1)
  So the amount of ambient light that can be seen

from an object is:

 Ambient = Ia x Ka

Diffuse light contribution

  Diffuse light: The illumination that a surface receives
from a light source and reflects equally in all direction

It does not matter where
the eye is

Diffuse lighting example

Diffuse light calculation

  Need to decide how much light the object point
receive from the light source – based on Lambert’s
Law

Receive more light Receive less light

Diffuse light calculation (2)

  Lambert’s law: the radiant energy D that a small
surface patch receives from a light source is:

 D = I x cos (θ)
 I: light intensity
 θ: angle between the light vector and the surface normal

N : surface normal

light vector (vector from object to light)

θ	

Diffuse light calculation (3)

  Like the ambient light case, different objects can
reflect different amount of diffuse light (different
diffuse reflection coefficient Kd, 0 <= Kd <= 1))

  So, the amount of diffuse light that can be seen is:

 Diffuse = Kd x I x cos (θ)

θ	

 θ	

N
L

cos(θ) = N.L

Specular light contribution

  The bright spot on the object
  The result of total reflection of
 the incident light in a concentrate
 region

See nothing!

Specular light example

Specular light calculation

  How much reflection you can see depends on
where you are

The only position the eye can see specular from P
if the object has an ideal reflection surface

But for a non-perfect surface you will
still see specular highlight when you move
a little bit away from the idea reflection
direction

When φ is small, you see more specular
highlight

θ ?

p

φ	

Specular light calculation (2)
  Phong lighting model

 specular = Ks x I x cos(φ)

 Ka: specular reflection coefficient
 N: surface normal at P
 I: light intensity
 φ: angle between V and R

 cos(φ): the larger is n, the smaller
 is the cos value
 cos(θ) = R.V

n

θ θ	

p

φ	

 V

R
N L

n

Specular light calculation (3)

  The effect of ‘n’ in the phong model

n = 10

n = 30

n = 90

n = 270

Put it all together

  Illumination from a light:
 Illum = ambient + diffuse + specular
 = Ka x I + Kd x I x (N.L) + Ks x I x (R.V)
  If there are N lights

 Total illumination for a point P = Σ (Illum)

  Some more terms to be added (in OpenGL):
  Self emission
  Global ambient
  Light distance attenuation and spot light effect

n

(N.H)

or

Lighting in OpenGL

  Adopt Phong lighting model (specular) plus diffuse
and ambient lights
  Lighting is computed at vertices

  Interpolate across surface (Gouraud/smooth shading) OR
  Use a constant illumination (get it from one of the vertices)

  Setting up OpenGL Lighting:
  Light Properties
  Enable/Disable lighting
  Surface material properties
  Provide correct surface normals
  Light model properties

Light Properties
  Properties:

  Colors / Position and type / attenuation

 glLightfv(light, property, value)

(1)  constant: specify which light you want to set the property
 example: GL_LIGHT0, GL_LIGHT1, GL_LIGHT2 … you can
 create multiple lights (OpenGL allows at least 8 lights)
(2) constant: specify which light property you want to set the value
 example: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION
 (check the red book for more)
(3) The value you want to set to the property

1 2 3

Property Example

  Define colors and position a light

GLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0};
GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_position[] = {0.0, 0.0, 1.0, 1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

colors

Position

What if I set the
Position to
(0,0,1,0)?

Types of lights

  OpenGL supports two types of lights
  Local light (point light)
  Infinite light (directional light)

  Determined by the light positions you provide
  w = 0: infinite light source (faster)
  w != 0: point light – position = (x/w, y/w, z/w)

GLfloat light_position[] = {x,y,z,w};

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Turning on the lights

  Turn on the power (for all the lights)
  glEnable(GL_LIGHTING);

  glDisable(GL_LIGHTING);

  Flip each light’s switch
  glEnable(GL_LIGHTn) (n = 0,1,2,…)

Controlling light position

  Modelview matrix affects a light’s position
  You can specify the position relative to:

  Eye space: the highlight remains in the same
position relative to the eye

  call glLightfv() before gluLookAt()

  World space: a light’s position/direction appears
fixed in the scene

  Call glLightfv() after gluLookAt()

  See Nat Robin’s Demo

Material Properties

  The color and surface properties of a material (dull,
shiny, etc)

  How much the surface reflects the incident lights
(ambient/diffuse/specular reflecetion coefficients)

 glMaterialfv(face, property, value)

Face: material property for which face (e.g. GL_FRONT, GL_BACK,
 GL_FRONT_AND_BACK)
Property: what material property you want to set (e.g. GL_AMBIENT, GL_DIFFUSE,
 GL_SPECULAR, GL_SHININESS, GL_EMISSION, etc)
Value: the value you can to assign to the property

Material Example

  Define ambient/diffuse/specular reflection
and shininess

 GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0};

 GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
 GLfloat shininess[] = {5.0}; (range: dull 0 – very shiny128)

 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
 mat_amb_diff);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_speacular);
 glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

refl. coefficient

Global light properties

 glLightModelfv(property, value)
  Enable two sided lighting

  property = GL_LIGHT_MODEL_TWO_SIDE
  value = GL_TRUE (GL_FALSE if you don’t want two sided

lighting)

  Global ambient color
  Property = GL_LIGHT_MODEL_AMBIENT
  Value = (red, green, blue, 1.0);

  Check the red book for others

Surface Normals

  Correct normals are essential for correct lighting
  Associate a normal to each vertex

 glBegin(…)

 glNormal3f(x,y,z)
 glVertex3f(x,y,z)
 …
 glEnd()

  The normals you provide need to have a unit length
  You can use glEnable(GL_NORMALIZE) to have OpenGL

normalize all the normals

Lighting revisit

  Where is lighting performed in the
graphics pipeline?

modeling and
viewing

v1, m1

v2, m2 v3, m3

per vertex
lighting

projection

clipping interpolate
vertex colors

viewport
mapping

Rasterization
texturing
shading

Display

Polygon shading model

  Flat shading – compute lighting once and
assign the color to the whole polygon

Flat shading

  Only use one vertex (usually the first one)
normal and material property to compute the
color for the polygon

  Benefit: fast to compute
  It is used when:

  The polygon is small enough
  The light source is far away (why?)
  The eye is very far away (why?)

  OpenGL command: glShadeModel(GL_FLAT)

Mach Band Effect

  Flat shading suffers from “mach band effect”
  Mach band effect – human eyes accentuate

the discontinuity at the boundary

Side view of a polygonal surface

perceived intensity

Smooth shading

  Fix the mach band effect – remove
edge discontinuity

  Compute lighting for more points on
each face

Flat shading smooth shading

Smooth shading
  Two popular methods:

  Gouraud shading (used by OpenGL)
  Phong shading (better specular highlight,

not supported by OpenGL)

Gouraud Shading (1)

  The smooth shading algorithm used in OpenGL
 glShadeModel(GL_SMOOTH)
  Lighting is calculated for each of the polygon vertices
  Colors are interpolated for interior pixels

Gouraud Shading (2)

  Per-vertex lighting calculation
  Normal is needed for each vertex
  Per-vertex normal can be computed by

averaging the adjust face normals

n n1 n2

n3 n4
n = (n1 + n2 + n3 + n4) / 4.0

Gouraud Shading (3)

  Compute vertex illumination (color) before the
projection transformation

  Shade interior pixels: color interpolation (normals
are not needed)

C1

C2 C3

Ca = lerp(C1, C2) Cb = lerp(C1, C3)

Lerp(Ca, Cb)

for all scanlines

* lerp: linear interpolation

Gouraud Shading (4)

  Linear interpolation

  Interpolate triangle color: use y distance to
interpolate the two end points in the scanline, and

 use x distance to interpolate interior
 pixel colors

a b

v1 v2 x

x = a / (a+b) * v2 + b/(a+b) * v1

Gouraud Shading Problem

  Lighting in the polygon interior can be
inaccurate

Gouraud Shading Problem

  Lighting in the polygon interior can be
inaccurate

Phong Shading

  Instead of interpolation, we calculate lighting
for each pixel inside the polygon (per pixel
lighting)

  We need to have normals for all the pixels –
not provided by the user

  Phong shading algorithm interpolates the
normals and compute lighting during
rasterization (need to map the normal back to
world or eye space though)

Phong Shading (2)

  Normal interpolation

  Slow – not supported by OpenGL and most of
the graphics hardware

n1

n2

n3

nb = lerp(n1, n3) na = lerp(n1, n2)

lerp(na, nb)

