* Illumination and Shading

‘.L Illumination (Lighting)

= Model the interaction of light with surface
points to determine their final color and
brightness

= OpenGL computes illumination at vertices

—//|\

\ ilumination

‘_L Shading

= Apply the lighting model at a set of points
across the entire surface

/ 1\

Shading

e

‘ \

i Illumination Model

= The governing principles for computing the
illumination

= A illumination model usually considers:

= Light attributes (light intensity, color, position,
direction, shape)

= Object surface attributes (color, reflectivity,
transparency, etc)

= Interaction among lights and objects (object
orientation)

= Interaction between objects and eye (viewing dir.)

‘L Illumination Calculation

= Local illumination: only consider the light, the
observer position, and the object material properties

N
<00 T

= Example: OpenGL

/ 1\

‘ \

* Illumination Models

= Global illumination: take into account the
interaction of light from all the surfaces in the scene

= Example: Ray Tracing (CIS681)

‘_L Basic Light Sources

Light intensity can be
independent or
dependent of the

Point light Directional light

distance between object
and the light source

Spot light

‘-L Simple local illumination

= The model used by OpenGL — consider three
types of light contribution to compute the
final illumination of an object

= Ambient
= Diffuse
= Specular

= Final illumination of a point (vertex) =
ambient + diffuse + specular

‘_L Ambient light contribution

= Ambient light (background light): the light that is
scattered by the environment

= A very simple approximation of global illumination

'\oﬁey
object 3© < /\’object 2

@
object 1

= Independent of the light position,object orientation,
observer’s position or orientation — ambient light has
no direction

‘_L Ambient lighting example

‘-L Ambient light calculation

= Each light source has an ambient light contribution

(Ia)
= Different objects can reflect different amounts of
ambient (different ambient reflection coefficient Ka,

0 <=Ka <= 1)

= S0 the amount of ambient light that can be seen
from an object is:

Ambient = Ia x Ka

ﬁ Diffuse light contribution

= Diffuse light: The illumination that a surface receives
from a light source and reflects equally in all direction

/-

It does not matter where
the eye is

* Diffuse lighting example

‘_L Diffuse light calculation

= Need to decide how much light the object point
receive from the light source — based on Lambert’s
Law

| \

_4./
71\

\J
< < T

Receive more light Receive less light

‘_L Diffuse light calculation (2)

= Lambert’s law: the radiant energy D that a small
surface patch receives from a light source is:

D I x cos (0)

I: light intensity
0: angle between the light vector and the surface normal

light vector (vector from object to light)

0 N : surface normal

‘_L Diffuse light calculation (3)

= Like the ambient light case, different objects can
reflect different amount of diffuse light (different
diffuse reflection coefficient Kd, 0 <= kd <= 1))

= S0, the amount of diffuse light that can be seen is:

Diffuse = Kd x I x cos (6)
y N

[\]
>€J>B ﬂ)} cos(0) = N.L

i Specular light contribution

= The bright spot on the object

= The result of total reflection of
the incident light in a concentrate
region

~g

/ 1\

r

‘ \

" /
.. See nothing!

* Specular light example

Specular light calculation

= How much reflection you can see depends on

where you are

The only position the eye can see specular from P
if the object has an ideal reflection surface

But for a non-perfect surface you will
still see specular highlight when you move
a little bit away from the idea reflection

direction

When ¢ is small, you see more specular
highlight

‘_L Specular light calculation (2)

Phong lighting model

n
specular = Ks x I x cos(¢)

Ka: specular reflection coefficient
N: surface normal at P

I: light intensity

¢: angle between V and R

n
cos(¢): the larger is n, the smaller
is the cos value
cos(6) = R.V

R
e%vﬁ
p

* Specular light calculation (3)

= The effect of 'n’ in the phong model

n=270

‘_L Put it all together

= Illumination from a light:
Illum = ambient + diffuse + specular "
=KaxI+ KdxIx(N.L)+ KsxIx(R.V)

= If there are N lights \ or

Total illumination for a point P = 2 (Tllum) (N.H)

= Some more terms to be added (in OpenGL):
= Self emission
= Global ambient
= Light distance attenuation and spot light effect

penGL.

‘.L Lighting in OpenGL

= Adopt Phong lighting model (specular) plus diffuse
and ambient lights
« Lighting is computed at vertices

= Interpolate across surface (Gouraud/smooth shading) OR
= Use a constant illumination (get it from one of the vertices)

= Setting up OpenGL Lighting:
= Light Properties
= Enable/Disable lighting
= Surface material properties
= Provide correct surface normals
= Light model properties

GroontiL.

‘L Light Properties

= Properties:
= Colors / Position and type / attenuation

glLightfv(light, property, value)
f
@/ @/ ®

(1) constant: specify which light you want to set the property
example: GL_LIGHTO, GL_LIGHT1, GL_LIGHT?2 ... you can
create multiple lights (OpenGL allows at least 8 lights)

(2) constant: specify which light property you want to set the value

example: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION
(check the red book for more)

(3) The value you want to set to the property

‘_L Property Example

= Define colors and position a light

GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_position[] = {0.0, 0.0, 1.0, 1.0}; <

GLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0};}

glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

GroontiL.

colors

Position

What if I set the

Position to
(OIOI 110)?

‘_L Types of lights Gl

= OpenGL supports two types of lights
= Local light (point light)
= Infinite light (directional light)
= Determined by the light positions you provide
= W = 0: infinite light source (faster)
= W I= 0: point light — position = (x/w, y/w, z/w)

GLfloat light_position[] = {x,y,z,w};
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

* Turning on the lights

= Turn on the power (for all the lights)
= glEnable(GL_LIGHTING); @

« glDisable(GL_LIGHTING); @

= Flip each light’s switch
= glEnable(GL_LIGHTn) (n =0,1,2,...)

‘_L Controlling light position penGL.

= Modelview matrix affects a light's position

= You can specify the position relative to:

= Eye space: the highlight remains in the same
position relative to the eye
= call glLightfv() before gluLookAt()

= World space: a light's position/direction appears
fixed in the scene
= Call glLightfv() after gluLookAt()

x See Nat Robin’s Demo

penGL.

‘.L Material Properties

= The color and surface properties of a material (dull,
shiny, etc)

= How much the surface reflects the incident lights
(ambient/diffuse/specular reflecetion coefficients)

glMaterialfv(face, property, value)

Face: material property for which face (e.g. GL_FRONT, GL_BACK,

GL_FRONT_AND_BACK)

Property: what material property you want to set (e.g. GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_SHININESS, GL_EMISSION, etc)

Value: the value you can to assign to the property

penGL.

‘.L Material Example

= Define ambient/diffuse/specular reflection
and shininess

GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0};

GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};]
GLfloat shininess[] = {5.0}; «——— (range: dull 0 — very shiny128)

«—— refl. coefficient

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_speacular);

glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

* Global light properties @eenSL.

glLightModelfv(property, value)

= Enable two sided lighting
= property = GL_LIGHT_MODEL_TWO_SIDE
= value = GL_TRUE (GL_FALSE if you don’t want two sided
lighting)
= Global ambient color
= Property = GL_LIGHT_MODEL_AMBIENT
= Value = (red, green, blue, 1.0);

s Check the red book for others

penGL.

‘L Surface Normals

= Correct normals are essential for correct lighting
= Associate a normal to each vertex

glBegin(...)
glNormal3f(x,y,z)
glVertex3f(x,y,z)

glEnd()
= The normals you provide need to have a unit length

= You can use glEnable(GL_NORMALIZE) to have OpenGL
normalize all the normals

i Lighting revisit

= Where is lighting performed in the

graphics pipeline?

vl, ml

& 7
v2, m2 v3, m3
Rasterization

texturing
shading

modeling and
viewing

viewport

“| mapping

» | Display

per vertex .
lighting projection

interpolate «| clipping
vertex colors

‘_L Polygon shading model

= Flat shading — compute lighting once and
assign the color to the whole polygon

‘_L Flat shading

= Only use one vertex (usually the first one)
normal and material property to compute the
color for the polygon

= Benefit: fast to compute

= It is used when:
= The polygon is small enough
= The light source is far away (why?)
= The eye is very far away (why?)

= OpenGL command: glShadeModel(GL_FLAT)

* Mach Band Effect

= Flat shading suffers from “mach band effect”

= Mach band effect — human eyes accentuate
the discontinuity at the boundary

perceived intensity

AN

Side view of a polygonal surface

ﬁ Smooth shading

s Fix the mach band effect — remove
edge discontinuity

= Compute lighting for more points on
each face

¢ ¢

Flat shading smooth shading

i Smooth shading

= Two popular methods:
= Gouraud shading (used by OpenGL)

= Phong shading (better specular highlight,
not supported by OpenGL)

Gouraud

‘_L Gouraud Shading (1)

= The smooth shading algorithm used in OpenGL
glShadeModel(GL_SMOOTH)

= Lighting is calculated for each of the polygon vertices

= Colors are interpolated for interior pixels

‘_L Gouraud Shading (2)

= Per-vertex lighting calculation
= Normal is needed for each vertex

= Per-vertex normal can be computed by
averaging the adjust face normals

1 n= (nl1+n2+n3+n4)/4.0

‘L Gouraud Shading (3)

= Compute vertex illumination (color) before the
projection transformation

= Shade interior pixels: color interpolation (normals
are not needed)

C1

for all scanlines
Ca = lerp(C1, C2) Cb = lerp(C1, C3) >

C2 C3
—— Lerp(Ca, Cb)

* lerp: linear interpolation

‘-L Gouraud Shading (4)

= Linear interpolation

O O @ [x- a/(a+b)*v2 + b/(a+b) * vi
— a — b —
vl X v2

= Interpolate triangle color: use y distance to
interpolate the two end points in the scanline, and

use X distance to interpolate interior
% pixel colors

i Gouraud Shading Problem

= Lighting in the polygon interior can be
Inaccurate

)

Gouraud

i Gouraud Shading Problem

= Lighting in the polygon interior can be
Inaccurate

Gouraud

i Phong Shading

= Instead of interpolation, we calculate lighting
for each pixel inside the polygon (per pixel
lighting)

= We need to have normals for all the pixels —
not provided by the user

= Phong shading algorithm interpolates the
normals and compute lighting during

rasterization (need to map the normal back to
world or eye space though)

‘_L Phong Shading (2)

= Normal interpolation

nl
na = lerp(n1, n2 / nb = lerp(nl, n3)
lerp(na, nb)
n2
n3

= Slow — not supported by OpenGL and most of
the graphics hardware

