
A Comprehensive Study of StaQC for Deep Code Summarization
Jayavardhan Reddy Peddamail

The Ohio State University
Columbus, Ohio

peddamail.1@osu.edu

Ziyu Yao
The Ohio State University

Columbus, Ohio
yao.470@osu.edu

Zhen Wang
The Ohio State University

Columbus, Ohio
wang.9215@osu.edu

Huan Sun
The Ohio State University

Columbus, Ohio
sun.397@osu.edu

ABSTRACT
Learning the mapping between natural language (NL) and program-
ming language, such as retrieving or generating code snippets based
on NL queries and annotating code snippets using NL, has been
explored by lots of research works [2, 19, 21]. At the core of these
works are machine learning and deep learning models, which usu-
ally demand for large datasets of <NL, code> pairs for training. This
paper describes an experimental study of StaQC [50], a large-scale
and high-quality dataset of <NL, code> pairs in Python and SQL
domain, systematically mined from the Stack Overflow forum (SO).
We compare StaQC with two other popular datasets mined from SO
on the code summarization task, showing that StaQC helps achieve
substantially better results, improving the current state-of-the-art
model by an order of 8% ∼ 9% in BLEU metric.

CCS CONCEPTS
• Information systems → Web searching and information
discovery; • Software and its engineering→Documentation;
• Computing methodologies→ Neural networks;

KEYWORDS
Code Summarization; Question-Code Pairs; Web Mining; Deep
Neural Networks; Stack Overflow

1 INTRODUCTION
Stack Overflow (SO) [41] as a website has helped software devel-
opment greatly over the past few years. The understanding and
re-usability of crowd sourced programming solutions can help im-
prove the overall process of software development. Over the past
few years, great research has been performed towards generation
or retrieval of code snippets from a natural language description
[1, 24, 28, 38, 53] and summarizing code snippets using natural
language [1–3, 10, 19, 21, 47]. The underlying machine learning
models for these tasks fall into the category of deep learning models
[13], which are inherently data hungry. Generating large datasets

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’18 Deep Learning Day, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The accepted answer post to question “Elegant
Python function to convert CamelCase to snake_case?” on SO.
In the figure, Si (i = 1, 2, 3, 4) and Cj (j = 1, 2, 3, 4) denote sen-
tence blocks and code blocks respectively [50].

containing high quality code snippets paired with a natural lan-
guage description from SO becomes an important task in building
many such data-hungry downstream applications for software en-
gineering.

Figure 1 shows an example question “Elegant Python function to
convert CamelCase to snake_case?” on SO and its accepted solution
post. The accepted solution post contains four code snippets {C1,
C2, C3, C4} but only C1 and C3 are standalone solutions, solely based
on which the questioner is able to solve the problem [50]. In such
a multi-code setting, it becomes a challenge to mine good quality
<natural language question, code solution> pairs. Researchers in
the past usually collected such pairs in heuristic ways: Simply
pairing the question title with the first code snippet, or with each
code snippet, or with the concatenation of all code snippets in the
post [4, 54]. Iyer et al. [21] merely employed accepting answer posts
that contain exactly one code snippet, and discarded all others with
multiple code snippets. Such heuristicly mined <question, code>
datasets suffer from low recall/precision problem, as they tend to
either drop many useful code solutions to a question or contain
noisy <question, code> pairs [50].

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD’18 Deep Learning Day, August 2018, London, UK peddamail et al.

In fact, multi-code answer posts are very common in SO, which
makes the low-precision and low-recall issues even more promi-
nent when we need to create large-scale <NL, code> datasets. To
address these problems, Yao et al. [50] proposed a novel Bi-View
Hierarchical Neural Network model (i.e., BiV-HNN) to systemati-
cally mine question-code pairs frommulti-code question posts, with
high precision and recall. The BiV-HNN model is able to capture
features from both the textual context as well as the programming
content of each code snippet, which are combined into a deep neu-
ral network architecture to predict whether this code snippet is a
standalone solution or not. The model substantially outperforms
heuristic approaches by more than 15% in F1 and accuracy, and is
then applied to automatically mine code solutions for SO questions
in Python and SQL domains, which results in StaQC, comprising
∼148K Python and ∼120K SQL <NL, code> pairs. According to
Yao et al. [50], models trained on StaQC for code retrieval task
[4, 21, 25] achieved impressive improvement in Mean Reciprocal
Rank [46] of about 6% over the baseline dataset [21]. The exper-
iment showed a glimpse into the potential of StaQC to improve
state-of-the-art performance on downstream tasks of software en-
gineering without considerable modifications to the model, which
is an interesting research question to explore, "Can StaQC show
similar gains in performance on other downstream applications in
Software Engineering?

In this paper, we investigate the task of Code Summarization,
which is to automatically generate a natural language summary
for a given code snippet. We test StaQC [50] against CODE-NN,
a heuristically mined dataset presented in [21] and CoNaLa [52],
which also utilizes machine learning models to systematically col-
lect question-code pairs from SO, on Code Summarization task.
We compare the performances of two code summarization models
[19, 21] for SQL and Python programming languages across dif-
ferent datasets. Through experiments, we show that StaQC helps
achieve significantly better results on SQL code summarization,
improving the current state-of-the-art model by 8% ∼ 9% in BLEU
metric. We also show that StaQC consistently performs better on
Python code summarization, when compared to CoNaLa.

Paper organization. The remainder of this paper is organized
as follows. Section 2 presents statistical analysis of the CODE-
NN dataset, the CoNaLa dataset and the StaQC dataset. Section
3 provides brief descriptions on the code summarization models.
Section 4 presents the experimental setup and results for the code
summarization models. Finally, Section 5 concludes the paper and
points out potential future directions.

2 STATISTICAL ANALYSIS OF THE DATASETS
2.1 CODE-NN Dataset
The CODE-NN dataset1 is heuristically mined from SO by Iyer
et al. [21], containing <NL, code> pairs of SQL and C# domains. In
order for a straightforward comparison with StaQC (which cov-
ers SQL and Python domains), in this paper, we focus on the SQL
dataset in CODE-NN. The authors first extracted SO question posts

1Available at https://github.com/sriniiyer/codenn

tagged by “sql”, “database” or “oracle” from the archived Stack Ex-
change Dump2 to be in SQL domain. Among them, the authors
only considered questions whose accepted answer post contains
exactly one code snippet. The CODE-NN dataset was then gen-
erated by pairing the question title with the one code snippet in
its accepted answer post. The dataset is further processed using
a semi-supervised bootstrap approach to filter titles that bear no
relation to the corresponding code snippet [21]. The final cleaned
SQL dataset contains 32,337 <question, code> pairs. Complete
statistics of the CODE-NN dataset are provided in Table 13.

2.2 StaQC Dataset
For larger scale and higher quality, the StaQC dataset 4 is system-
atically mined from SO by Yao et al. [50], covering Python and
SQL domain. Similar to CODE-NN, the authors identified SQL and
Python posts by their tags on SO. They further cleaned them by
using a supervised binary classifier to select only the "how-to-do-it"
questions, since answers to other types of questions are not very
likely to be standalone code solutions. From this cleaned dataset, an-
swer posts containing exactly one code snippet are directly mined
similar to CODE-NN.

To extract code solutions from multi-code answer posts (i.e.,
answer posts containing multiple code snippets), Yao et al. [50]
proposed a novel Bi-View Hierarchical Neural Network (BiV-HNN)
model. The BiV-HNN model consists of two different modules that
capture features from the textual contexts and the code content
of a code snippet, and combines them into a deep neural network
architecture, which finally predicts whether a code snippet is a stan-
dalone solution or not. The model was shown to outperform both
the widely adopted heuristic methods (e.g., pairing the question
title with the first code snippet or all code snippets in its answer
post) and traditional classifiers (e.g., Logistic Regression and Sup-
port Vector Machines) by more than 15% higher F1 and accuracy
in identifying code solutions. The final mined StaQC dataset con-
tains 119,519 SQL domain and 147,546 Python domain <question,
code> pairs, making it the largest-to-date dataset for SQL Domain.
Figure 2 shows an example of two code solutions in the StaQC
dataset, which are mined from one multi-code SQL answer post.
Complete statistics of the StaQC dataset are provided in Table 1.

2.3 CoNaLa Dataset
Similar to StaQC, CoNaLa [52]5 is also extracted by a machine
learning model from SO, resulting in the largest-to-date dataset
of 598,237 question-code pairs in Python domain. As in the two
previous work [21, 50], Yin et al. [52] collected SO Python questions
and filtered down to only “how-to” questions from them. Different
from [50], they considered every line (or fragment) in a code block
as a candidate code solution, and built a logistic regression classifier
to decide whether the candidate aligns well with the question title or
not. The classifier utilizes two kinds of features to capture both the
syntactic and the semantic information in a code candidate, leading

2https://archive.org/details/stackexchange
3To have a direct comparison, code snippets are all tokenized by the preprocessing
steps mentioned in Section 4.2 and 4.3. Therefore, the dataset statistics are different
from the reported statistics in [21, 50].
4Available at https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
5Available at https://conala-corpus.github.io/.

A Comprehensive Study of StaQC for Deep Code Summarization KDD’18 Deep Learning Day, August 2018, London, UK

Table 1: Statistics of datasets.

Programming
Language

Dataset
of QC
pairs

Question Code
Average
length

of
tokens

Average
Length

of
tokens

SQL
CODE-NN 32,337 9 10,086 27 141,018
StaQC 119,519 9 35,722 37 740,837

Python
CoNaLa 598,237 9 25,582 8 394,777
StaQC 147,546 9 59,906 39 1,171,117

Figure 2: An example of two code solutions in StaQC [50],
which were mined from a multi-code answer post.

tomuch better recall (precision) at the same level of precision (recall)
as the heuristic approaches. Complete statistics of the CoNaLa
dataset are provided in Table 1.

2.4 Question-Code Distribution of the Datasets
StaQC and CoNaLa enjoy great diversity in the sense that they
containmultiple code solutions for a question.We count the number
of code solutions for each question and show the “question-# of code”
distribution for each dataset in Table 2. It is observed that about 15%
of the SQL questions in StaQC have multiple code solutions, while
the same statistic for CODE-NN is only 0.08%. StaQC achieves
such rich diversity due to the BiV-HNN model, which analyzes
different <question, code> pairs from each multi-code post and can
identify code solutions with high precision. To verify, we present
the statistics of StaQC-multi, which is the subset of StaQC mined
solely from SO multi-code answer posts. About 57% of the SQL
questions and 42% of the Python questions in StaQC-multi datasets
contain multiple code solutions and 9% of the questions have more
than 2 solutions in both SQL and Python. Due to the mining of
all fragments in each code snippet, the CoNaLa dataset shows
even greater diversity, around 87% of which contain more than
3 solutions. This “question-# of code” distribution for StaQC and
CoNaLa reflects the advantage of systematical mining in terms of
contribution to dataset diversity.

A dataset with rich surface variations is beneficial for the devel-
opment of complex deep learning models [13]. When a model does
not observe certain data patterns in the training phase, it becomes
less capable to predict them during testing. StaQC can alleviate
this issue by enabling a model to learn from alternative code solu-
tions to the same question. Owing to its large scale and diversity,
Yao et al. [50] showed that a model trained on StaQC dataset can
outperform the one trained on the CODE-NN dataset by 6% Mean
Reciprocal Rank [46] on the code retrieval task. In this paper, we
further demonstrate the strength of StaQC through experiments
on the code summarization task.

3 CODE SUMMARIZATION MODELS
3.1 Background
Code Summarization is a task to generate a natural language sum-
mary given a code snippet. Current state-of-the-art architectures
for code summarization model are built upon the recent advance-
ments in deep recurrent neural network (RNN) [12] architectures.
Specifically, Long Short-Term Memory (LSTM) [11, 18] has become
the core component of many tasks involving sequential data due to
its capability to learn long-term dependencies. It has also been used
to better handle long dependencies in source code (e.g., a Python
function is used far away from its definition) [19]. The details of
RNN and LSTM are shown in Figure 3a and 3b respectively.

3.1.1 Recurrent Neural Networks. RNNs are intimately re-
lated to sequences and lists because of their chain-like architecture.
As illustrated in Figure 3a, At each time step t , the RNN cell takes
as input, the current input token as well as the previous hidden
state outputted by its previous time step t − 1 and updates the
current hidden state namely, ht = tanh(Wxt +Uht−1 + b) where
W ,U , and b are the trainable parameters and tanh is the activation
function [19] . Though, in theory, RNNs are capable to capture
long-distance dependencies, in practice, they fail due to the gradient
vanishing/exploding problems [6, 36].

3.1.2 Long Short-Term Memory. LSTM introduces a struc-
ture called “memory cell” to solve the problem. Basically, a LSTM
unit is composed of three multiplicative gates which control the
proportions of information to forget and to pass on to the next time
step. Figure 3b gives the basic structure of an LSTM unit. The LSTM
is trained to selectively “forget” information from the hidden states,
thus allowing room to take in more important information [18].

KDD’18 Deep Learning Day, August 2018, London, UK peddamail et al.

Table 2: Question - # of code distributions.

Programming
Language

Dataset
of code solutions

1 2 3 >3

of
Questions

SQL
CODE-NN 25,625 16 2 2
StaQC 86,788 12,536 2,003 455

StaQC-multi 11,266 12,333 1,992 449

Python
CoNaLa 2,264 1,233 1,832 35,178
StaQC 108,653 13,300 2,807 892

StaQC-multi 23,403 13,291 2,800 891

(a) Standard RNN model and its unfolded architecture
through time steps.

(b) Basic LSTM Cell.

Figure 3: An illustration of the standardRNNandLSTM[19].

LSTM has been widely used to solve semantically related tasks
like speech recognition [14], sequence tagging [9, 20, 32], machine
translation [5, 48] and etc., leading to state-of-the-art performances.

3.1.3 LanguageModels. Languagemodels have been success-
fully applied to solve a variety of problems in NLP, e.g., machine
translation [5, 7, 16, 31], speech recognition [8, 29], named entity
recognition [17, 27, 37] and question answering [51]. Language
models are trained to perceive language patterns from its training
corpus. Specifically, given a sequence of words x = (x1,x2, ...,xn)
in a sentence, a language model estimates the probability of this
sentence by computing a product of conditional probabilities of
predicting the next word based on the prior words, as shown in Eq 1.

Figure 4: The Codenn model [21] that generates a NL sum-
mary n = n1, ..., END given code snippet c1, ..., ck . The vector
ti encodes the code snippet through an attentionmechanism
based on the current LSTM hidden state hi . The two vectors
are then combined to generate the next word ni , which will
be taken as input and fed into the next LSTM cell. The ∝
blocks denote softmax operations.

LSTM’s have become an important building block for languagemod-
els due to their capability to remember long range dependencies
[23, 26, 33, 42, 43].

P(x) = P(x1)P(x2 |x1)...P(xn |x1...xn−1) (1)

3.2 Codenn
Codenn summarization model, published in [21], uses an end-to-
end generation system to perform content selection and surface
realization jointly. The core component of Codenn is a LSTM-based
recurrent neural network with an attention mechanism [14, 30],
which models the probability of a natural language summary con-
ditioned on the given code snippet, as shown in Figure 4. Formally,
given a NL summary n = n1, ...,nl , each word ni is represented by

A Comprehensive Study of StaQC for Deep Code Summarization KDD’18 Deep Learning Day, August 2018, London, UK

a 1-hot vector ni ∈ {0, 1} |N | , where N is the vocabulary size. The
model computes the probability of n as a product of the conditional
next-word probabilities as shown in Eq 2:

s(c,n) =
l∏
i=1

p(ni |n1, ...,ni−1) (2)

with
p(ni |n1, ...,ni−1) ∝ W tanh(W1hi + W2ti) (3)

whereW ∈ R |N |xH andW1,W2 ∈ RHxH are trainable parameters,
and H is the embedding dimensionality of the summaries. hi is the
LSTM hidden state at time step i . ti is the contribution from the
attention model on the source code. The generation of each word is
guided by a global attentionmodel [30], which computes a weighted
sum of the embeddings of the code snippet tokens based on the
current LSTM state. A code snippet c is represented as a set of 1-hot
vectors c1, ..., ck ∈ 0, 1 |C | , where C is the vocabulary of all tokens
in the code snippets. The attention model computes,

ti =
k∑
j=1

αi, j · cjF (4)

where F ∈ R |C |xH is a token embedding matrix and each αi, j
is the attention weight for each code token cj w.r.t current hidden
state hi:

αi, j =
exp(hiTcjF)∑k
j=1 exp(hi

TcjF)
(5)

3.3 DeepCom
DeepCom [19] is built upon advances in Neural Machine Transla-
tion (NMT). Typical NMT aims to automatically translate from one
language to another language [5, 44]. Intuitively, Hu et al. [19] con-
sidered generating NL summaries or comments as a variant of the
NMT problem, where source code written in a programming lan-
guage needs to be translated to text in natural language. Compared
with Codenn which only builds a LSTM based language model for
NL summaries, the NMT model builds language models for both
source code and summaries.

Specifically, DeepCom models both the code snippets and the
text summaries as sequences, and uses the Sequence-to-Sequence
(Seq2Seq) approach to learn the translation between them. Seq2Seq
has been widely used for machine translation [44], text summariza-
tion [39], dialogue system [45], etc. The model consists of three
components: a LSTM encoder, a LSTM decoder, and an attention
component. Figure 5 illustrates the detailed Seq2Seq model.

At each time step t , the encoder reads one token xt of the source
code sequence, then updates and records the current hidden state st .
The source code features are finally encoded into a context vector c
through an attentionmechanism [5]. Specifically, DeepCom defines
individual ci for predicting each target word i as a weighted sum
of all hidden states s1, .., sm in encoder:

ci =
m∑
j=1

αi jsj (6)

Figure 5: The DeepCom model [19] with a Sequence-to-
Sequence modeling.

The weight αi j of each hidden state sj is computed as

αi j =
exp(ei j)∑m

k=1 exp(eik)
(7)

and
ei j = a(hi−1, sj) (8)

is an alignment model which scores how well the inputs around
position j and the output at position i match. The decoder aims
to generate the target summary by sequentially predicting the
probability of a word yi conditioned on the context vector ci and
its previous generated words y1, ...,yi−1 i.e.,

p(yi |y1, ...,yi−1,x) = д(yi−1,hi , ci) (9)

where д is used to estimate the probability of the word i [19].
Other ideas published in [19] include using Abstract Syntax

Trees (AST) to capture structure in code. The authors propose a
new AST traversal method (namely structure-based traversal) and
a domain-specific method to deal with out-of-vocabulary tokens
better in ASTs. However, since most of the code snippets on SO
are not directly parsable [21, 49], we do not perform AST parsing
and simply traverse each code snippet line by line into a sequence,
similar to the experiment performed in [19].

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Evaluation
We measure the quality of the generated code summaries by the
BLEU-4 metric [35]. BLEU score has been the widely-used accuracy
measure for NMT [5] and has also been used in software tasks eval-
uation [15, 22]. It calculates the similarity between the generated
sequence and reference sequence. BLEU score has proven to be a
good measure of accuracy for generated sequences [15, 22], so we
adopt it has the main metric for model evaluation as in [19, 21].

BLEU uses a modified form of precision to compare a candidate
sequence against multiple reference sequences. BLEU measures the

KDD’18 Deep Learning Day, August 2018, London, UK peddamail et al.

average n-gram precision on a set of reference sentences, with a
penalty for overly short sentences. The score is computed as:

BLEU = BP · exp(
N∑
n=1

wn log(pn)) (10)

where pn is the ratio of length n subsequences in the candidate that
are also in the reference. For BLEU-4, we set N to 4, which is the
maximum number of grams. BP is brevity penalty,

BP =

{
1 i f c > r

e(1−r/c) i f c ≤ r
(11)

where c is the length of the candidate translation and r is the effec-
tive reference sequence length.

4.2 SQL-Domain Experimental Setup
For the experiments on the Codenn model and the DeepCom model
for SQL domain, we keep the implementation details exactly the
same as mentioned in [21] and [19], only changing the training
dataset for each experimental setting. In the first and second set-
ting, we use CODE-NN and StaQC (SQL) datasets as training data
respectively. To emphasize the importance of surface variation in
StaQC, we just added the 41,826 <natural language question, code
solution> pairs, automatically mined from Stack Overflow SQL
multi-code answer posts, to the CODE-NN dataset (i.e., CODENN-
multi = CODE-NN + StaQC-multi), which becomes the training
data in our third experimental setting. For all SQL domain experi-
ments, we used the DEV (valid) set and the EVAL (test) set in [21]
for development and evaluation, respectively. All questions and
code snippets occurring in the these two sets were removed from
training data.

For the experiments on the Codennmodel, all the hyper-parameters
are kept the same as mentioned in [21], except for the dropout rate
[40], which was chosen from {0.4, 0.7} for each experimental set-
ting, to avoid over-fitting and achieve a better performance. For
the experiments on DeepCom, almost all the hyper-parameters
are as mentioned in [19] except for the LSTM hidden dimension,
which was chosen from {128,512}, and the dropout rate [40], which
was chosen from {0.4, 0.7} for each experimental setting. Hu et al.
[19] use a vocabulary size of 30,000 for code snippets as well as
NL summaries. Instead, we experimented with vocabulary sizes
of {30,000, 50,000} for code snippets, in order to accommodate the
considerable difference in token numbers of code and summaries,
as shown in Table 1. We used simple "space" tokenization to create
vocabulary for both code snippets and natural language.6 The best
model was selected as the one achieving the highest BLEU score
on DEV sets.

4.3 Python-Domain Experimental Setup
We experimented with the DeepCommodel [19] for Python domain.
In the first and second experimental settings, we use StaQC-python
and CoNaLa datasets as training data respectively. As the CoNaLa
dataset (∼600k) is more than ×3 times the size of StaQC Python
dataset (∼148k), we perform a third experiment using CoNaLa-
reduced dataset (∼148k), which is a random subset of CoNaLa and
6Although we use a simpler data processing method, we got comparable experimental
results as the reported in [19].

Table 3: Performance of different SQL code summarization
models across different experimental settings on the EVAL
set. Performance on DEV is indicated in parentheses.

Model Dataset BLEU-4 score(%)

Codenn
CODE-NN 19.64 (21.42)
StaQC 21.41 (21.67)

CODENN-multi 21.44 (21.37)

DeepCom
CODE-NN 32.55 (32.91)
StaQC 40.95 (41.44)

CODENN-multi 40.02 (40.36)

Table 4: Performance of DeepCom Python code summariza-
tion model across different experimental settings on the
EVAL set. Performance on DEV is indicated in parentheses.

Dataset Size of Training Data BLEU-4 score(%)

CoNaLa 481,872 43.95 (40.16)
CoNaLa-reduced 145,353 42.07 (38.50)
StaQC-python 145,353 44.49 (40.15)

has the same size as the StaQC-python dataset, in order to make
a direct comparison. We randomly sampled 10% of the CoNaLa
dataset as the development (DEV) set across all experiments. We
test all models with the CoNaLa test set [52] (denoted as “EVAL”).
All questions and code snippets occurring in the DEV and EVAL
set were removed from the training data.

For all experiment, we set the the maximum length of a code
sequence to 100 and the maximum question length to 30. The vo-
cabulary sizes for code and natural language questions are set to
50,000 and 30,000 respectively. We used simple "space" tokenization
to create vocabulary for both code and natural language. We exper-
imented with different hyper-parameters: Number of LSTM layers
{2, 3}, hidden dimension {128, 256, 512} and dropout rate {0.3, 0.8} in
each setting. The best model was selected as the one achieving the
highest BLEU score on the DEV set.

4.4 Experimental Results
Table 3 shows the BLEU score of each SQL Code summarization
model on EVAL and DEV set across different experimental settings.
Across different model architectures, we can consistently observe
that models trained on StaQC and CODENN-multi showed im-
proved performance over models trained on CODE-NN. For the
Codenn summarization model, we can observe an improvement
of 2% in BLEU metric over the CODE-NN dataset. Specifically for
DeepCom, StaQC helps achieve a substantial 8% ∼ 9% improvement
in BLEU metric on the current state-of-the-art model [19].

By comparing the results of experimental setting 1 (using the
CODE-NN dataset) to experimental setting 3 (using the CODENN-
multi dataset), we can clearly see the importance of the mined
multi-code questions. The rich surface variations in theminedmulti-
code questions helps improve the performance across all models.
Note that the performance gains shown here are still conservative,

A Comprehensive Study of StaQC for Deep Code Summarization KDD’18 Deep Learning Day, August 2018, London, UK

since we adopted almost the same hyper-parameters and a small
evaluation set, in order to see the direct impact of StaQC. Using
more challenging evaluation sets and by conducting systematic
hyper-parameter selection, we expect models trained on StaQC to
be more advantageous.

Table 4 presents the BLEU scores for different experiments on
the Python Code Summarization task. The DeepCom model trained
on StaQC [50] consistently performs similar or slightly better than
the model trained on CoNaLa [52], even though CoNaLa is ×3 size
of StaQC. We further make a direct comparison between StaQC
and CoNaLa-reduced, which are of the same size, and observe an
improvement of ∼ 2.5% in BLEU metric provided by StaQC over
CoNaLa-reduced. In the future, we plan to conduct more qualitative
study over different experiments.

5 CONCLUSION
This paper explores an experimental study of StaQC [50], a large-
scale and high-quality dataset of <natural language question, code
snippet> pairs in Python and SQL domain, in comparison with two
other existing datasets, CODE-NN [21] and CoNaLa [52]. We show
that the systematically mined StaQC can greatly help downstream
tasks aiming to associate natural language with programming lan-
guage, by performing experiments on the code summarization task.
In the future, we plan to perform more qualitative analysis across
these datasets and also perform more experiments on other down-
stream code-language tasks like code generation.

ACKNOWLEDGMENTS
This research was sponsored in part by the Army Research Of-
fice under cooperative agreements W911NF-17-1-0412, Fujitsu gift
grant, and Ohio Supercomputer Center [34]. The views and conclu-
sions contained herein are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notice
herein.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2017.

A Survey of Machine Learning for Big Code and Naturalness. arXiv preprint
arXiv:1709.06182 (2017).

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091–2100.

[3] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
Modelling of Source Code and Natural Language. In Proceedings of the 32nd
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille, France, 2123–
2132. http://proceedings.mlr.press/v37/allamanis15.html

[4] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
modelling of source code and natural language. In International Conference on
Machine Learning. 2123–2132.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[7] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey Dean. 2007.
Large language models in machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL).

[8] Ciprian Chelba, Dan Bikel, Maria Shugrina, Patrick Nguyen, and Shankar Kumar.
2012. Large scale language modeling in automatic speech recognition. arXiv
preprint arXiv:1210.8440 (2012).

[9] Jason PCChiu and Eric Nichols. 2015. Named entity recognitionwith bidirectional
LSTM-CNNs. arXiv preprint arXiv:1511.08308 (2015).

[10] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,
Mirella Lapata, and Charles Sutton. 2016. TASSAL: Autofolding for source code
summarization. In Proceedings of the 38th International Conference on Software
Engineering Companion. ACM, 649–652.

[11] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:
Continual prediction with LSTM. (1999).

[12] Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed
representations by backpropagation through structure. In Neural Networks, 1996.,
IEEE International Conference on, Vol. 1. IEEE, 347–352.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The
MIT Press.

[14] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

[15] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631–642.

[16] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-
Ying Ma. 2016. Dual learning for machine translation. In Advances in Neural
Information Processing Systems. 820–828.

[17] Djoerd Hiemstra. 2001. Using language models for information retrieval. (2001).
[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.
[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment

Generation. In Proceedings of the 2017 26th IEEE/ACM International Conference on
Program Comprehension. ACM.

[20] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for
sequence tagging. arXiv preprint arXiv:1508.01991 (2015).

[21] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073–2083.

[22] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 135–146.

[23] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
2016. Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410
(2016).

[24] Neel Kant. 2018. Recent Advances in Neural Program Synthesis. CoRR
abs/1802.02353 (2018). arXiv:1802.02353 http://arxiv.org/abs/1802.02353

[25] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code
Examples. In Proceedings of the 36th International Conference on Software Engi-
neering (ICSE 2014). ACM, New York, NY, USA, 664–675. https://doi.org/10.1145/
2568225.2568292

[26] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-
Aware Neural Language Models.. In AAAI. 2741–2749.

[27] Onur Kuru, Ozan Arkan Can, and Deniz Yuret. 2016. Charner: Character-level
named entity recognition. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers. 911–921.

[28] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. 2018.
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to
the Linux Operating System. CoRR abs/1802.08979 (2018). arXiv:1802.08979
http://arxiv.org/abs/1802.08979

[29] Xunying Liu, James L Hieronymus, Mark JF Gales, and Philip C Woodland. 2013.
Syllable language models for Mandarin speech recognition: Exploiting character
language models. The Journal of the Acoustical Society of America 133, 1 (2013),
519–528.

[30] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[31] Thang Luong, Michael Kayser, and Christopher D Manning. 2015. Deep neu-
ral language models for machine translation. In Proceedings of the Nineteenth
Conference on Computational Natural Language Learning. 305–309.

[32] Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354 (2016).

[33] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing
and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017).

[34] Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. http://osc.edu/
ark:/19495/f5s1ph73.

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

http://proceedings.mlr.press/v37/allamanis15.html
http://arxiv.org/abs/1802.02353
http://arxiv.org/abs/1802.02353
https://doi.org/10.1145/2568225.2568292
https://doi.org/10.1145/2568225.2568292
http://arxiv.org/abs/1802.08979
http://arxiv.org/abs/1802.08979
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73

KDD’18 Deep Learning Day, August 2018, London, UK peddamail et al.

[36] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International Conference on Machine
Learning. 1310–1318.

[37] Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power.
2017. Semi-supervised sequence tagging with bidirectional language models.
arXiv preprint arXiv:1705.00108 (2017).

[38] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax Net-
works for Code Generation and Semantic Parsing. CoRR abs/1704.07535 (2017).
arXiv:1704.07535 http://arxiv.org/abs/1704.07535

[39] Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention
model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685
(2015).

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[41] Stack Overflow. 2018. Stack Overflow. https://stackoverflow.com/.
[42] Martin Sundermeyer, Hermann Ney, and Ralf Schlüter. 2015. From feedforward

to recurrent LSTM neural networks for language modeling. IEEE Transactions on
Audio, Speech, and Language Processing 23, 3 (2015), 517–529.

[43] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM neural net-
works for language modeling. In Thirteenth Annual Conference of the International
Speech Communication Association.

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[45] Oriol Vinyals and Quoc Le. 2015. A neural conversational model. arXiv preprint
arXiv:1506.05869 (2015).

[46] Ellen M Voorhees et al. 1999. The TREC-8 Question Answering Track Report.. In
Trec, Vol. 99. 77–82.

[47] Xiaoran Wang, Yifan Peng, and Benwen Zhang. 2018. Comment Generation for
Source Code: State of the Art, Challenges and Opportunities. CoRR abs/1802.02971
(2018). arXiv:1802.02971 http://arxiv.org/abs/1802.02971

[48] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[49] Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable
code: An analysis of Stack Overflow code snippets. In Proceedings of the 13th
International Conference on Mining Software Repositories. ACM, 391–402.

[50] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A Sys-
tematically Mined Question-Code Dataset from Stack Overflow. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 1693–1703.

[51] Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li. 2015.
Neural generative question answering. arXiv preprint arXiv:1512.01337 (2015).

[52] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to Mine Aligned Code and Natural Language Pairs from Stack
Overflow. In International Conference onMining Software Repositories (MSR). ACM,
476–486. https://doi.org/10.1145/3196398.3196408

[53] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. CoRR abs/1704.01696 (2017). arXiv:1704.01696 http:
//arxiv.org/abs/1704.01696

[54] Meital Zilberstein and Eran Yahav. 2016. Leveraging a corpus of natural language
descriptions for program similarity. In Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. ACM, 197–211.

http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535
https://stackoverflow.com/
http://arxiv.org/abs/1802.02971
http://arxiv.org/abs/1802.02971
https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696

	Abstract
	1 Introduction
	2 Statistical Analysis of the Datasets
	2.1 CODE-NN Dataset
	2.2 StaQC Dataset
	2.3 CoNaLa Dataset
	2.4 Question-Code Distribution of the Datasets

	3 Code Summarization Models
	3.1 Background
	3.2 Codenn
	3.3 DeepCom

	4 Experimental Setup and Results
	4.1 Evaluation
	4.2 SQL-Domain Experimental Setup
	4.3 Python-Domain Experimental Setup
	4.4 Experimental Results

	5 Conclusion
	Acknowledgments
	References

