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Fine-Grained Knowledge Sharing in
Collaborative Environments
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Abstract—In collaborative environments, members may try to acquire similar information on the Web in order to gain knowledge
in one domain. For example, in a company several departments may successively need to buy business intelligence software
and employees from these departments may have studied online about different business intelligence tools and their features
independently. It will be productive to get them connected and share learned knowledge. We investigate fine-grained knowledge
sharing in collaborative environments. We propose to analyze members’ Web surfing data to summarize the fine-grained
knowledge acquired by them. A two-step framework is proposed for mining fine-grained knowledge: (1) Web surfing data is
clustered into tasks by a nonparametric generative model; (2) a novel discriminative infinite Hidden Markov Model is developed
to mine fine-grained aspects in each task. Finally, the classic expert search method is applied to the mined results to find proper
members for knowledge sharing. Experiments on Web surfing data collected from our lab at UCSB and IBM show that the fine-
grained aspect mining framework works as expected and outperforms baselines. When it is integrated with expert search, the
search accuracy improves significantly, in comparison with applying the classic expert search method directly on Web surfing

data.

Index Terms—Advisor search, text mining, Dirichlet processes, graphical models

1 INTRODUCTION

NTERACTING  with the Web and with
Icolleagues /friends to acquire information is a daily
routine of many human beings. In a collaborative
environment, it could be common that members try
to acquire similar information on the Web in order to
gain specific knowledge in one domain. For example,
in a company several departments may successively
need to buy business intelligence (BI) software,
and employees from these departments may have
studied online about different BI tools and their
features independently. In a research lab, members
are often focused on projects which require similar
background knowledge. A researcher may want to
solve a data mining problem using nonparametric
graphical models which she is not familiar with but
have been studied by another researcher before. In
these cases, resorting to a right person could be far
more efficient than studying by oneself, since people
can provide digested information, insights and live
interactions, compared to the Web. For the first
scenario, it is more productive for an employee to get
advices on the choices of BI tools and explanations
of their features from experienced employees; for
the second scenario, the first researcher could get
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suggestions on model design and good learning
materials from the second researcher. Most people in
collaborative environments would be happy to share
experiences with and give suggestions to others on
specific problems. However, finding a right person is
challenging due to the variety of information needs.
In this paper, we investigate how to enable such
knowledge sharing mechanism by analyzing user
data.

Learning Java [ Online shopping [™ Learning graphical models

Fig. 1. An illustrative toy example for knowledge shar-
ing in a collaborative environment.

An illustrative toy example is given in Figure 1.
One can use “tcpdump” to intercept a sequence of
Web surfing activities (IP packets) for each mem-
ber. The scene is, Alice starts to surf the Web and
wants to learn how to develop a Java multithreading
program, which has already been studied by Bob
(red rectangle). In this case, it might be a good idea
to consult Bob, rather than studying by herself. We
aim to provide such recommendations by analyzing
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surfing activities automatically. In this example, not
necessarily Bob is an expert in every aspect of Java
programming; however, due to his significant surfing
activities in Java multithreading, it is reasonable to
assume that he has gained enough knowledge in this
area so that he can help Alice (in practice we could
set a threshold on the amount of related surfing data
to test significance). Even if Bob is still learning, he
could share his experiences in learning and possibly
suggest good learning materials to Alice, thus saving
Alice’s effort and time.

This scenario departs from the traditional expert
search problem in that expert search aims to find
domain experts based on their associated documents
in an enterprise repository, while our goal is to find
proper “advisors” who are most likely possessing
the desired piece of fine-grained knowledge based
on their Web surfing activities. The semantic struc-
tures hidden in Web surfing (as illustrated by Fig-
ure 1) reflect people’s knowledge acquisition process
and make Web surfing data significantly different
from enterprise repositories. Traditional expert search
methods may not be able to well handle the Web
surfing data. For example, in the above example John
spent a lot of effort on “Java 10” which is only
partially relevant to Alice’s need. If we simply treat
Web surfing data as a collection of documents and
apply traditional expert search methods, John would
be ranked higher than Bob since he viewed more
contents about “Java”, though not quite relevant. We
will analyze this issue in detail in Section 6 and
demonstrate it empirically in Section 7.2. Therefore, it
is necessary to first summarize people’s fine-grained
knowledge reflected in their Web surfing activities by
recognizing the semantic structures, and then search
over the mined pieces of fine-grained knowledge (e.g.
“Java 10”). We call this search scenario, “advisor
search”, to differentiate from traditional expert search.
We use the term advisor search to emphasize that the
knowledge of the retrieved people might not be very
deep, but good enough to help others if they have not
solidly gained the related knowledge yet.

In order to analyze the knowledge acquired by Web
users, we propose to log and analyze users” Web surf-
ing data (not only search, but also browsing activities,
which reveal a user’s knowledge gaining process).
Users’ interactions with the Web can be segmented
into different “tasks”, e.g., “learning Java” and “shop-
ping”. Textual contents of a task are usually cohesive.
We define a session (a document in Figure 1) as an
aggregation of consecutively browsed Web contents
of a user that belong to the same task. Sessions are
atomic units in our analysis. The content of sessions
in a task could evolve gradually: people usually learn
basic concepts first and then move towards advanced
topics. A task can be further decomposed into fine-
grained aspects (called micro-aspects). A micro-aspect
could be roughly defined as a significantly more

cohesive subset of sessions in a task. For example,
the task “learning Java” might contain “Java 10” and
“Java multithreading” as two micro-aspects. When
pursuing a task, a user could spend many sessions
on a micro-aspect. Mining these micro-aspects (micro-
knowledge) is critical: it can provide a detailed de-
scription of the knowledge gained by a person, which
is the basis for advisor search.

We propose a two-step framework for mining fine-
grained knowledge (micro-aspects): (1) In the first
step, we formulate tasks from sessions. We design an
infinite Gaussian mixture model based on Dirichlet
Process (DP) [12] to cluster sessions. We adopt a
nonparametric scheme since the number of tasks is
difficult to predict. (2) We then extract micro-aspects
from sessions in each task. The challenges are: the
number of micro-aspects in a task is unknown; ses-
sions for different micro-aspects of a task are tex-
tually similar; sessions for a micro-aspect might not
be consecutive. To this end, a novel discriminative
infinite Hidden Markov Model (d-iHMM) is proposed
to mine micro-aspects and evolution patterns (if any)
in each task. A background model is introduced in
order to enhance the discriminative power. Finally, we
apply a language model based expert search method
[1] over the mined micro-aspects for advisor search.

To our knowledge, there is no existing techniques
for micro-aspect mining. Although the hierarchical
topic modeling algorithm [5] can discover general-
to-specific topic hierarchies, it decomposes sessions
into topics but not groups them. A person with many
sessions containing partially relevant topics would
still be ranked unexpectedly high (like the “John vs.
Bob” problem aforementioned). Our goal is to detect
people’s online learning activities (e.g. learning “Java
I0”) in session data reflected by subsets of sessions,
rather than discerning topics hierarchically in sessions
(e.g. “Java” with “IO” as its subtopic). Mining the
semantic structures in sessions (Figure 1) is important
for advisor search, as will be shown in Section 6.

The proposed two-step framework intrinsically
groups sessions into micro-aspects in a coarse-to-fine
fashion, which bears some similarity to hierarchical
clustering [30]. However, traditional hierarchical clus-
tering methods could not handle session data well.
This is because people usually go to the same Website
for different micro-aspects of a task. For example,
researchers could commonly use Google Scholar! to
look for papers related to Clustering. Two micro-
aspects, “spectral clustering” and “density-based clus-
tering”, can be difficult to separate since there are a
lot of background contents in their sessions, e.g. naviga-
tional texts, template texts, etc. These background con-
tents can drastically blur the boundary between the
two micro-aspects, considering they are already simi-
lar. Hence, traditional hierarchical clustering methods

1. http:/ /scholar.google.com
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could easily mess up micro-aspects of a task, while
the proposed d-iHMM model can better separate dif-
ferent micro-aspects since it models the background
contents explicitly. The experimental results verify our
analysis: d-iHMM does better than iHMM [2] (which
can be approximately regarded as clustering sessions
into micro-aspects without background modeling) in
micro-aspect mining.

The contributions of this work are summarized as
follows. (1) We propose the fine-grained knowledge
sharing problem in collaborative environments. The
goal is not finding domain experts but a person who
has the desired specific knowledge. This problem
is significant in practice in that learning from an
advisor (if she/he is easy to find) might be more
efficient than studying on the Web (though not al-
ways). A lot of repeating efforts could be saved. (2) We
propose to solve this problem by first summarizing
Web surfing data into fine-grained aspects, and then
search over these aspects. We compare this strategy
with searching advisors directly over sessions (i.e.
applying traditional expert search methods on Web
surfing data directly) both analytically (Section 6)
and empirically (Section 7.2). (3) We propose a novel
two-step micro-aspect mining framework consisting
of two nonparametric DP models. This framework
does not require pre-specified number of tasks and
number of micro-aspects of a task, and can correctly
summarize sessions into micro-aspects by explicitly
modeling background contents in sessions of a task.
(4) We collect real user-generated Web surfing data
at our lab and at IBM to test the feasibility of our
idea. Experiments on both datasets show that our
scheme is effective and outperforms the one using raw
session data. We also show the proposed DP models
work as expected and achieve better performance
than baseline methods. Certainly, the selection of these
algorithms is not unique. Through this study, we
demonstrate the possibility of finding right persons
automatically by analyzing their Web surfing data.

The rest of the paper is organized as follows: the
next section outlines related work. Section 3 gives
the problem formulation. In Section 4 we present the
Gaussian DP model for clustering sessions into tasks.
Section 5 describes the proposed d-iHMM model for
mining fine-grained aspects in each task (i.e. session
cluster), followed by a discussion of the advisor search
method based on the mined micro-aspects and a
detailed analytical comparison to searching directly
over sessions in Section 6. Experiments are described
in Section 7, and finally, Section 8 concludes our work.

2 RELATED WORK

In this section we review research fields that are
related to our work: expert search, analysis of user
search tasks and topic modeling.

2.1 Expert Search

Expert search aims at retrieving people who have
expertise on the given query topic. Early approaches
involve building a knowledge base which contains the
descriptions of people’s skills within an organization
[8]. Expert search became a hot research area since
the start of the TREC enterprise track [9] in 2005.
Balog et al. proposed a language model framework
[1] for expert search. Their Model 2 is a document-
centric approach which first computes the relevance of
documents to a query and then accumulates for each
candidate the relevance scores of the documents that
are associated with the candidate. This process was
formulated in a generative probabilistic model. Balog
et al. showed that Model 2 performed better [1] and it
became one of the most prominent methods for expert
search. Other methods have been proposed for enter-
prise expert search (e.g. [11], [24]), but the nature of
these methods is still accumulating relevance scores of
associated documents to candidates. Expert retrieval
in other scenarios has also been studied, e.g. online
question answering communities [19], academic soci-
ety [10].

The proposed advisor search problem is different
from traditional expert search. (1) Advisor search is
dedicated to retrieving people who are most likely
possessing the desired piece of fine-grained knowl-
edge, while traditional expert search does not explic-
itly take this goal. (2) The critical difference lies in the
data, i.e. sessions are significantly different from doc-
uments in enterprise repositories. A person typically
generates multiple sessions for a micro-aspect of a
task, e.g. a person could spend many sessions learning
about Java multithreading skills. In other words, the
uniqueness of sessions is that they contain semantic struc-
tures which reflect people’s knowledge acquisition process.
If we treat sessions as documents in an enterprise
repository and apply the traditional expert search
methods (e.g. [1]), we could get incorrect ranking: due
to the accumulation nature of traditional methods, a
candidate who generated a lot of marginally relevant
sessions (same task but other micro-aspects) will be
ranked higher than the one who generated less but
highly relevant sessions, e.g. John vs. Bob in Figure 1
for the query “Java multi-thread programming” (Sec-
tion 6 will provide a detailed analysis of this issue).
Therefore, it is important to recognize the seman-
tic structures and summarize the session data into
micro-aspects so that we can find the desired advisor
accurately. In this paper we develop nonparametric
generative models to mine micro-aspects and show
the superiority of our search scheme over the simple
idea of applying traditional expert search methods on
session data directly.
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2.2 Analysis of Search Tasks

Recently, researchers have focused on detecting, mod-
eling and analyzing user search tasks from query
logs. Here we name some representative works. Jones
and Klinkner found that search tasks are interleaved
and used classifiers to segment the sequence of user
queries into tasks [15]. Liu and Belkin combined task
stage and task type with dwell time to predict the
usefulness of a result document, using a 3-stage and
2-type controlled experiment [18]. Ji et al. used graph
regularization to identify search tasks in query logs
[14]. Kotov et al. designed classifiers to identify same-
task queries for a given query and to predict whether
a user will resume a task [16]. Wang et al. formulated
the cross-session search task mining problem as a
semi-supervised clustering problem where the depen-
dency structure among queries in a search task was
explicitly modeled and a set of automatic annotation
rules were proposed as weak supervision [28].

This line of research tries to recover tasks from
people’s search behaviors and bears some similarity to
our work. Nevertheless, our work differs from theirs
from the following aspects. First, we consider general
Web surfing contents (including search), rather than
search engine query logs. Query logs do not record
the subsequent surfing activity after the user clicked
a relevant search result. Moreover, it is found that 50%
of a user’s online pageviews are content browsing
[17]. Web surfing data provides more comprehensive
information about the knowledge gaining activities
of users. Although various methods were proposed
for extracting search tasks in query logs, these meth-
ods cannot be applied in our setting since they ex-
ploit query log specific properties. Second, none of
the above works tried to mine fine-grained aspects
for each task. When studying, people could spend
some effort on one fine-grained aspect of a task and
generate multiple contents. Summarizing fine-grained
aspects can provide a fine-grained description of the
knowledge gained by a person. Finally, none of exist-
ing works which analyze user online behaviors (not
limited to search behaviors, e.g. [29]) tried to address
advisor search by exploiting the data generated from
users’ past online behaviors.

2.3 Topic Modeling

Topic modeling is a popular tool for analyzing topics
in a document collection. The most prevalent topic
modeling method is Latent Dirichlet Allocation (LDA)
[7]. Based on LDA, various topic modeling methods
have been proposed, e.g. the dynamic topic model for
sequential data [6] and the hierarchical topic model
for building topic hierarchies [5]. The Hierarchical DP
(HDP) model can also be instantiated as a nonpara-
metric version of LDA [25]. However, our problem
is not a topic modeling problem. Our goal is to
recover the semantic structures of people’s online

learning activities from their Web surfing data, i.e.
identifying groups of sessions representing tasks (e.g.
learning “Java”) and micro-aspects (e.g. learning “Java
multithreading”). While topic modeling decomposes a
document into topics. After applying topic modeling
methods on session data, it is still difficult to find
the right advisor by using the mined topics. This
is because a person with many sessions containing
partially relevant topics would still be ranked unex-
pectedly high, due to the accumulation of relevance
among sessions. Grouping sessions into micro-aspects
is important for advisor search.

3 PROBLEM FORMULATION

We refer to a member in a collaborative environment
as a “candidate”. In our problem, we have a group
of h candidates {ey,..., ey} where each candidate e;
generates a sequence of sessions W) = {w("
wg\z,z} For clarity, we group sessions of different can-
didates together using a uniform subscript index:
W = {wi,...,wn}, with totally NV sessions. The fine-
grained knowledge sharing problem consists of three
subproblems:

1) Partition W into a set of clusters C =
{C1,...,C;} where each cluster represents a
task;

2) Partition sessions in each C; into a set of micro-
aspects S; = {si1,..., i, }, where each micro-
aspect s;; is a significantly more cohesive subset
of sessions from Cj.

3) Compute the association weight between e; and
sjk as (W s;x]. Given a query ¢, produce a
ranking of {e;} according to their relevance to
q assessed by the relevance of the associated
micro-asepcts and the corresponding association
weights.

4 SESSION CLUSTERING

The input of this step is W, where each w; is a
Dy x 1 word frequency vector with Dy as the vo-
cabulary size. The intuition is that contents generated
for the same task are textually similar while those for
different tasks are dissimilar. Hence, clustering is a
natural choice for recovering tasks from sessions. In
our case, it is difficult to preset the number of tasks
given a collection of sessions. Therefore, we need to
automatically determine the number of clusters (k),
which is also one of the most difficult problems in
clustering research. Most methods for automatically
determining % run the clustering algorithm with dif-
ferent values of k£ and choose the best one according
to a predefined criterion [13], which could be costly.
In Spectral Clustering, a heuristic for determining &
is to search for a significant raise in the magnitude of
the eigenvalues [27]. However, this does not work in
our context since the Web contents are so noisy that
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Fig. 2. The graphical representation of the Gaussian
Dirichlet Process mixture model.

eigenvalues start to raise gradually from the second
smallest eigenvalue. In this work, we advocate using
a generative model with a Dirichlet Process (DP) prior
[12] for clustering. DPs provide nonparametric priors
for k and the most likely £ is learned automatically. A
DP, written as G ~ DP(«, Gy), can be interpreted as
drawing components (clusters here) from an infinite
component pool, with a called the scaling parameter
and G being the prior for a random component.
An intuitive interpretation of DP is the stick-breaking
construction:

i—1 [e%e)
m) =v [[a-v),  G=) midy,
j=1 i=1

where v = {v1,v9,...} with each v; drawn from the
Beta distribution Beta(1, &), 1; is a component drawn
from Gy and d,, is an atom at ¢;. m; is the mixture
weight of 1; given by breaking the current length of
the “stick” (i.e. [T'_(1 — v;)) by the fraction v;. The
generation of 7 is often written as 7 ~ GEM(«). 7
defines a prior mixing distribution among the infinite
many components. The posterior mixing distribution
and the real number of components drawn from the
DP is then learned from the data. Readers are referred
to [25] for a detailed description of DPs.

4.1 Clustering by GDP Mixture Model

When using probabilistic models for clustering, the
Gaussian mixture model is a common choice and
can be viewed as a probabilistic version of k-means
[13]. However, the data dimensionality Dy is too high
to apply Gaussian distributions in our case (often
above 10K). Therefore, we first apply the well-known
Laplacian Eigenmap (LE) technique [3] to reduce the
dimensionality from Dy to D where Dy > D. We
choose LE since it could also capture the nonlinear
manifold structure of a task, e.g. the topics of a task
could evolve and drift which could be described by
the “half-moon” structure [3].

Let Y = {y1,...,yn} denote the session vectors
in the subspace learned by LE. The graphical rep-
resentation of GDP is depicted in Figure 2. The DP
prior is represented by the stick-breaking construction
process, with {v;}72, and « defined above. z; is an

assignment variable of the mixture component (i.e.
cluster) with which y; is associated. px and )\, are
D x 1 vectors denoting the mean vector and the
diagonal precision matrix’s diagonal vector of the k-th
Gaussian component. This means each dimension of
the data is independent. {my, By, a0, bo} are the set of
hyperparameters for the Gaussian-Gamma conjugate
prior of Gaussian components. The generative process
of GDP is as follows

1) Draw vg|a ~ Beta(l,«), k=1,2,...

2) Draw )\kj|a0,b0 ~ Gamma(ao,bo), k =

1,2,...:5=1,...,D
3) Draw pk|mo, Bo, Ak ~ N(mo, (BoD*)71), k =
1,2,. ..

4) For the i-th session:
a) Draw z;|v ~ Mult(m(v))
b) Draw y;|z;, pt, A ~ N (s, (D)7 1)
Here Mult(-) denotes the multinomial distribution.
D is a diagonal matrix with elements of A, on its
diagonal.

The infinite Gaussian mixture model has already
been proposed and used for clustering. The over-
all design of our model follows previous work, but
with a different design choice for the prior of Aj.
Previous models treat A\ either as the full precision
matrix with a Wishart prior [23] or as a scalar with a
Gamma prior [21]. The former design choice is able
to model complicated cluster structures but the time
cost is high, while the modeling power of the latter
one is very limited. In our model, )y is a vector,
meaning that different dimensions are independent
and have different precisions. The reasons are: (1) the
output of LE is the orthogonal eigenvectors of a real
symmetric matrix, which means different dimensions
are independent; (2) different dimensions may have
different degrees of variation. In this way, the model
is relatively more efficient and, meanwhile, retains
certain expressive power.

Either Gibbs sampling or variational inference can
be used to solve the GDP model. Although Gibbs sam-
pling can provide theoretical guarantees of accuracy,
variational inference converges much faster and can
also provide a reasonable approximation to the real
posteriors [4]. Hence, we choose variational inference
in this work. The derivation is simply an application
of the general derivation in [4]. Readers can refer
to the appendix (as a supplemental material) for a
detailed description of the variational inference of the
GDP model.

5 MINING FINE-GRAINED KNOWLEDGE

The major challenge of mining micro-aspects is that
the micro-aspects in a task are already similar with
one another. If we model each component (i.e. micro-
aspect) independently (as most traditional models
do), it is likely that we mess up sessions from dif-
ferent micro-aspects, i.e. leading to bad discrimina-
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(b)

Fig. 3. The graphical representations of (a) the d-iIHMM model, and (b) the original iHMM model.

tion. Therefore, we should model different micro-
aspects in a task jointly, separating the common con-
tent characteristics of the task from the distinctive
characteristics of each micro-aspect. To this end, we
extends the infinite Hidden Markov Model (iHMM)
[2] and propose a novel discriminative infinite Hidden
Markov Model (d-iHMM) to mine micro-aspects and
possible evolution patterns in a task. The graphical
representation is shown in Figure 3(a). The observed
variables of the model is a sequence of T sessions
{w:}L| belonging to a cluster outputted by the GDP.
In practice, a cluster can contain multiple sequences
from different people. However, we only discuss the
single sequence case for clarity. Extension to the multi-
sequence case is a trivial work since those sequences
do not depend on each other. A background unigram
model, 6,, which is estimated by aggregating all the
task’s sessions, is shared among states (i.e. micro-
aspects). s,’s are state assignment variables. z;; is an
indicator variable, controlling whether word wy; is
generated by 05, (z; = 1) or 0, (z; = 0). m, € (0,1)
encodes the fraction of words in w; which are not gen-
erated by 6, with §y as a Beta prior. In this way, the
common background contents in the task’s sessions
are explained by 6,, thus increasing the discriminative
power of the model. d-iHMM is fundamentally based
on the Hierarchical DP model [25] where the infinite
component pools (corresponding to {7 }) of all states
share the same base infinite component pool (corre-
sponding to /). The generative process is summarized
as follows

1) Draw S|yo ~ GEM(vo)
2) For k = 1,2,..., draw 7, ~ DP(a,f), Op ~
Dil”(ho, ey ho)
3) Fort=1to T:
a) Draw sils;—1 ~
Beta(1, dp)
b) For each word wy; in the t-th session

Mult(7s, ,), meldo  ~

i) Draw zy|n: ~ Bernoulli(n;)
i) If z;; = 1, draw wy; ~ Mult(fy,), else

draw wy; ~ Mult(6y)

Here Dir(ho,...,ho) is a symmetric Dirichlet distri-
bution where the dimension is the vocabulary size,
Dy. p(s1]s0) is given by a uniform multinomial dis-
tribution. As in [25], we place Gamma priors on
the hyperparameters o and ~p: o ~ Gamma(ay,ba)
and 79 ~ Gamma(a,,b,). The evolution patterns
learned (if statistically strong) could be used for con-
tent recommendation. Furthermore, d-iHMM could
be iteratively applied on the learned micro-aspects to
find more fine-grained aspects.

The key difference between d-iHMM and iHMM
is the background model part, ie., 65, do, 7:'s and
zt;’s are all new nodes compared to the graphical
model of iHMM (Figure 3(b)). Modeling the common
background contents makes d-iHMM significantly
different from iHMM and enhances the discrimina-
tive power so that we can identify relatively more
cohesive subsets of documents from a set of cohesive
documents with background contents.

5.1

The beam sampling method for iHMM is proposed in
[26], which is shown to converge to the true posterior
much faster than a classical Gibbs sampler. Therefore,
we develop a beam sampler for our d-iHMM model.
Beam sampling adopts the slice sampling [22] idea
to limit the number of states considered at each time
step to a finite number, so that dynamic programming
can be used to sample whole state trajectories effi-
ciently. Specifically, we first sample an auxiliary vari-
able u; for each time step ¢ in the sequence with con-
ditional distribution w; ~ Uniform(0, s, ,s,). Given
{u;}, the sequence {s;} is re-sampled, considering
only the values of s;_; that satisfy 75, s, > us. Hence,
{u+} act as a truncation of the infinite number of states
and make the number of trajectories with positive
probabilities finite, so that the whole sequence can be
sampled holistically. {s;} is sampled in one run by a
forward filtering backward sampling algorithm.

Solving d-iHMM by Beam Sampling
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Each sampling iteration samples {u;}, {s:}, {2},
{6}, {mx} and B in turn. We first sample {u;} as de-
scribed above and create more states if the maximum
unassigned probabilities in {7} (the last element of
each ) is greater than the minimum of {u;}. Then
we perform a forward sweep of {s;} where for the
t-th step we compute

p(sewie, ue, 2¢) (1)
o (St, U, We|W1ip—1, Utip—1, 2¢)
=p(we|ss, 2t)
X Z Ty < s,y s, )P(St—1|Wiit—1, U121, Z4—1),
St—1

where p(wy|s, z;) means we generate a word wy;
by 6, only if z; = 1, and I(C) = 1 if condi-
tion C is true and 0 otherwise. s is sampled from
p(st|wir, ur.r, zr). Then we perform a backward
sweep to sample each s; given s¢11 by

p(3t|5t+luw1:T7u1:T72t) = p(3t|5t+lawl:taul:t-i—lazt)
)
XP(St|wiie, Wistt1, 2e)P(Seq1|8¢, Upg1)

P(tig1|se, Se41)p(se41]s¢e)
p(uis1]se)

O<p(ut+1 |5t)p(5t|w1:ta U1:¢, Zt)
=p(se|wie, v, 2e)M(upg1 < Topsyy)

In order to efficiently sample z:;, we integrate out
{n:}. This makes all z;,’s belonging to w,; dependent
on one another. Let z_;; be the set of z variables for
wy except zy;. We have

p(2ti|2-ti, 00, we, 0, O, 5¢) 3)
op(2ti, Ztis Wi |0, 0, Ob, st) = p(zt]d0)p(we|2t, s¢, 6, 0p)
OCB(ZJ- 2ty + 1 Jwe| — 32 25 + bo)

B(1, o)
where |w;| is the number of words in w;. The final

sampling probability ratio is (omitting variables in the
condition for clarity):

p(wti|2tia s¢,0, 9b)a

plz =1|--+) _ plweilfs,) (D2 25 + 1)
PG =01) P00 (el — 52y 50 217 + 00 — 1)
(4)
where p(w|f,) means the probability of generating
word w by 6y.

For 6y, since the prior Dirichlet distribution is con-
jugate to the multinomial distribution, the posterior
sampling distribution of 6;, is

Dir(ho + w(k, 1), ho + w(k,2), ..., ho + w(k,d)), (5)

where w(k, ) is the total number of word occurrences
of the i-th word in the vocabulary which are generated
by Hk.

The sampling distributions of 7, and S follow
directly from [25], but we briefly describe them for
completeness. Let n;; be the number of times we
jump from state i to state j. Let M be the number of

4"
é

Java multithreading

20 sessions

[ JavalO

Fig. 4. A toy example for comparing session based
and micro-aspect based advisor search.

distinct states in the sequence, relabeled from 1 to M.
Merging the infinitely many states not represented in
the sequence into one state, the sampling distribution
of (7Tk1, ooy M Zl;.?:lw-i—l Wkk’) is

Dir(api + nk1, ..., aBu + g, o Z Bi).  (6)
i=M+1

To sample 3, a set of auxiliary variables {m;;} is used
with independent conditional distributions

p(mi; = mls, B,a) oc S(nj, m)(aB;)™, )

where S(-,-) denotes Stirling numbers of the first
kind. (81, ..., B0, > p—pr41 Brr) is then sampled by
Dir(m.l, oo, Mupg, "yo) with m. = nyzl M.

6 ADVISOR SEARCH

After we obtain the mined micro-aspects of each task,
advisor search can then be implemented on the col-
lection of learned micro-aspects. We employ the tra-
ditional language model based expert search method
[1]. Let d be a document (i.e. micro-aspect). Given
a query ¢, the method uses p(e|q) to rank advisor
candidates. By assuming uniform prior distributions
p(e) and p(d) and applying Bayes’ rule, it is equivalent
to rank candidates by p(qle) = >, p(q|d)p(dle) or
plgle) o< >, p(qld)p(eld) [1]. p(q|d) is the probability
of generating ¢ by d’s unigram model, with proper
smoothing [1]. Intrinsically, the method can be viewed
as a weighted accumulation of p(¢|d)’s from the asso-
ciated documents of e. Recall that the weight between
e and d is the number of sessions of e which fall
in d. p(dle) and p(e|d) encode the normalized asso-
ciation weights between candidates and documents
from a candidate’s perspective (candidate scheme) and
a document’s perspective (document scheme), respec-
tively. The candidate scheme is not intuitive in our
context. Consider two candidates e; and es. e; viewed
totally 100 sessions in which 10 sessions fall in d,
while for ey the two numbers are 10 and 2. Hence,
p(dler) = 0.1 < p(dlez) = 0.2. However, e; viewed
more sessions in d than e, and should have a stronger
association. Therefore, the document scheme is used
for ranking.

Compared to applying traditional expert search
methods directly on session data, searching over
micro-aspects has the advantage that the associations
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between candidates and “documents” are correctly
normalized. A toy example is shown in Figure 4.
Suppose a user wants to query about “Java multi-
thread programming”. Suppose orange (with black
lines) sessions’ relevance scores are 0.9 and those of
green sessions are 0.1. Note the association weights
between candidates and sessions are all 1. If we
apply the language model method on sessions directly
(which means sessions are “documents”), the ranking
scores of Bob and John are 1.8 and 2 respectively?.
In contrast, by summarizing the two micro-aspects
in Figure 4 and employing micro-aspects as “docu-
ments”, Bob’s score becomes 0.9 while that of John
becomes 0.1, which is our expectation.

Time Complexity The time cost of GDP can be re-
garded roughly as O(NKDI) where I is the number
of iterations and K is the truncation level of the vari-
ational distribution for the infinite Gaussian mixtures
(see appendix). If other variables are fixed, the time
cost is approximately linear in N. The time cost of d-
iHMM is O((M?*(T+1)+2(M +T)+ N,,)I) where I is
the number of sampling iterations, M is the number
of states (could vary in different iterations) and N,
is the total number of words in the T sessions. d-
iHMM could be more costly than GDP given T'= N,
since NV,, can be much larger than T'. Fortunately, the
runs of d-iHMM on different tasks are independent
and consequently can be parallelized. It is possible to
further speed up GDP and d-iHMM by incorporat-
ing recent parallel computing techniques for machine
learning algorithms (e.g. [20]). Nevertheless, parallel
computing is beyond the focus of this work, which
is to demonstrate the feasibility of summarizing fine-
grained aspects from Web surfing data for advisor
search. The advisor search step is efficient since the
main cost is only one matrix vector multiplication
(O(Sgh), where S, is the total number of micro-
aspects and & is the number of candidates).

7 EXPERIMENTS

We validate our methods for fine-grained knowledge
mining and advisor search on real Web surfing data.
Firstly, we show the results of advisor search using
the full pipeline. Then we evaluate the individual
models, GDP for session clustering and d-iHMM for
fine-grained knowledge mining.

7.1 Datasets

We collected Web surfing data from two real collabo-
rative environments: (1) the data mining lab at UCSB,

2. We also use the document scheme here. The reason is similar:
if we use the candidate scheme, e; who viewed 10 sessions about
“Java I0” in total 100 sessions may receive a lower score than ep
who viewed 2 in total 10 sessions for a query g related to “Java
10”. Assuming the relevance scores of “Java I0” sessions are all
0.9, it is easy to verify that, using the candidate scheme, p(g|e1) =
S°10,0.9 x 0.01 = 0.09 and p(gle2) = 322, 0.9 x 0.1 = 0.18

and (2) the “networking” research group in IBM T.
J. Watson Research Center. The first dataset, Surf-Lab,
consists of surfing data from 8 students in the data
mining lab at UCSB. We run the “tcpdump” program
(“windump” in windows) on each student’s PC, in
order to record their surfing activities. Afterwards,
HTTP packets (only those generated by Web browers)
and the corresponding textual contents were extracted
from the dump files. The second dataset, Surf-IBM,
is collected from the gateway at IBM T. ]J. Watson
Research Center. Web surfing packets generated by 20
research scientists in the “networking” research group
are captured. The Surf-IBM dataset is processed in a
similar way. Both datasets span nearly two months.
The sequence of http contents of each person was seg-
mented into sessions according to the following rule:
we place a session boundary between two consecutive
contents if their timestamps are at least 10 minutes
away from each other, or their cosine similarity is
below a threshold (0.5 in this work). Surf-Lab has 686
sessions and Surf-IBM has 3,925 sessions.

TABLE 1
Queries for Surf-IBM (delimited by “;").

Disruption tolerant network protocols; DoS attack;
Intrusion detection vulnerability scanning; Cloud
computing bigtable; Database data mirroring; Big
data Big Blue; IBM websphere; Network topology
ring; Network collapsed backbone; Mobile location
network protocols; Virus malware; 802.11b protocol;
Python programming; Machine learning jeopardy;
Gateway antivirus program; Network traffic conges-
tion; Security information Management authoriza-
tion; DB2 database; Database data integrity; Network
virtualization

7.2 Advisor Search

We first show the results of advisor search. Three
schemes are compared: session-based, micro-aspect-
based and task-based, with an increasing granularity.
The language model based expert search method
mentioned in Section 6 is used as the retrieval method.
We have tried using other traditional expert search
methods, but the results are very similar since they
all intrinsically accumulate relevance scores of associ-
ated “documents” to candidates. For each scheme, a
language model is constructed for each “document”,
i.e. a session, a micro-aspect, or a task, by aggregating
all the texts belonging to it. Note that the session-
based scheme is intrinsically applying the traditional
language model based expert search method on Web
surfing data directly.

The evaluation methodology is as follows: we gen-
erate 20 queries for each dataset. These queries repre-
sent the fine-grained knowledge required by the spe-
cific projects on which the candidates were working
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during the data collection period. Queries for Surf-
IBM are shown in Table 1 as some examples. The
ground truth labels of a query are obtained by show-
ing candidates their top relevant sessions assessed
by the language model method and asking them to
assign a relevance score to themselves for the data
collection period on a scale from 0 to 2: (1) score=0
means “irrelevant”; (2) score=1 means “partially rele-
vant”, i.e. he/she has background knowledge for the
query; (3) score=2 means “very relevant”. Normalized
Discount Cumulative Gain (NDCG) is used as the
evaluation metric:

NDOGan = 2,3 2 !

he ni - lo

gy (i 1 1)’ ®)

where r; is the relevance score of the candidate at
rank 7 and Z, is a normalization term to let the
perfect ranking have a NDCG value of 1. We focus on
n = 1,2, 3, since it is costly for a user to verify many
suggested advisors. It is important to place correct
people at highest positions.

The results are shown in Tables 2 and 3. We
can see that the micro-aspect-based scheme outper-
forms the other two schemes. One-tailed Wilcoxon
test is performed based on all 40 queries to evaluate
the significance of the superiority. In particular, the
micro-aspect-based scheme is significantly better than
the session-based scheme at significance level 0.05,
and significantly better than the task-based scheme
at significance level 0.01. The task-based scheme is
the worst (significantly worse than the session-based
scheme at significance level 0.05). This is because a
task can contain multiple micro-aspects which might
not match a user’s need very well.

TABLE 2
Comparison of three advisor search schemes on the
Surf-Lab dataset. The session-based scheme is
intrinsically applying the traditional language model
based expert search method on Web surfing data

directly.
Method NDCG@1 | NDCG@2 | NDCG@3
Micro-aspect-based .883 918 942
Session-based 783 .839 .885
Task-based 783 .825 841

Specifically, we find for one fifth of queries the
micro-aspect-based scheme outperforms the session-
based scheme. For other queries, they generate very
similar rankings. We examine those one fifth of
queries and find the situations conform to our analysis
in Section 6. Specific investigation results for two
queries are shown in Tables 4 and 5. Candidates are
anonymized. For the two queries, the micro-aspect-
based scheme ranks c¢; and c3 at the top while the
session-based scheme ranks c; and c¢; at the top,
respectively. In Surf-Lab, we found c¢; was reading

TABLE 3
Comparison of three advisor search schemes on the
Surf-IBM dataset. The session-based scheme is
intrinsically applying the traditional language model
based expert search method on Web surfing data

directly.
Method NDCG@1 | NDCG@2 | NDCG@3
Micro-aspect-based .900 .926 .928
Session-based 817 .885 .894
Task-based .633 .666 .669

< Thinking in Java > and generated 45 sessions, none
of which was focused on the “multithreading” aspect.
c; generated 3 true relevant sessions and should be
regarded as a better candidate. Similar situation is
observed for c¢3 and ¢4 with respect to the query
“Mobile Location Network Protocols”.

TABLE 4
An example query from Surf-Lab where the
micro-aspect-based scheme shows better
performance. “True rel / Generally rel” means the
number of sessions which are indeed relevant to the
query divided by the number of sessions which are
relevant to the general domain “Java”.

[ Q: Java multithreading |

Candidate | True rel / Generally rel
c1 3/4
c2 0/ 45

TABLE 5
An example query from Surf-IBM where the
micro-aspect-based scheme shows better
performance. “True rel / Generally rel” means the
number of sessions which are indeed relevant to the
query divided by the number of sessions which are
relevant to the general domain “Network Protocols”.

[ Q: Mobile Location Network Protocols |

Candidate True rel / Generally rel
c3 8/ 13
Cy4 1/ 66

7.3 Session Clustering

Instead of providing a comprehensive comparison of
different clustering methods, which is not the focus
of this work, the following experiment shows that the
proposed GDP model with LE preprocessing (named
LEGDP) achieves its design goal. We implement two
baseline methods for comparison: (1) Spectral Clus-
tering (SC), which is a popular clustering method
requiring users to specify the number of clusters; (2)
GDP with Principle Component Analysis (PCAGDP),
which first uses PCA to reduce data dimensionality
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and then applies GDP on the subspace. We use Surf-
Lab in this experiment.

The ground truth task labels were obtained man-
ually. Each student involved in Surf-Lab was given
his/her session data and was asked to assign a task
label to each session. Three popular evaluation met-
rics for clustering are employed: Purity, F-measure and
Normalized Mutual Information (NMI). Purity tries to
map each cluster to the class in the ground truth
which is the most frequent in the cluster. It is defined
as the accuracy of this map as follows:

. _ 1
Purity(Q,2) = = Z max }|wk Né&;l, )

where Q = {wi,...,wk} is the set of clusters and
= = {&,...,&s} is the set of ground truth classes.
F-measure operates on pairs of objects (i.e. sessions).
The clustering result is treated as n(n—1)/2 decisions,
each of which corresponds to a pair of objects and
decides whether they belong to the same class. Based
on this, the precision and recall scores are computed
and the F-measure is computed as the harmonic mean
of precision and recall. NMI is defined as

I (=)
NMI-2) = 00 T aE)

(10)

where I(-) and H(-) represent mutual information and
entropy, respectively.

TABLE 6
Comparison of the numbers of tasks discovered by
LEGDP and PCAGDP.

Dataset
Method 3p-Lab | 5p-Lab [ Surf-Lab
Ground Truth 33 47 61
LEGDP 37 45 59
PCAGDP 19 38 44

7.3.1 Performance Comparison

First, we show that LEGDP can roughly capture the
number of tasks. To this end, we derive two small
datasets from Surf-Lab: (1) 3p-Lab, which contains 3
people and 169 sessions; (2) 5p-Lab, which comprises
5 people and 411 sessions. We tune model parameters
on 3p-Lab (details in Section 7.3.2) and continue to
use the same set of parameters on 5p-Lab and Surf-
Lab. The results are shown in Table 6. As can be
seen, LEGDP approximately captures the number of
tasks. We also show the number of clusters learned by
PCAGDP. PCAGDP cannot well capture the number
of tasks. The reason could be that PCA is a linear di-
mensionality reduction method and may not capture
the complex topical variations of a task.

Second, we investigate the clustering performance
measured by Purity, F1 and NMI. Table 7 shows
the results. For LEGDP and SC, we use the same

session affinity matrix W [27]. Therefore, the intrinsic
difference between LEGDP and SC is due to GDP
and k-means. We set the parameter k£ for SC to the
number of clusters learned by LEGDP for the sake of
fairness. We can see from Table 7 that both LEGDP
and SC outperforms PCAGDP. This indicates that
the nonlinear manifold structures do exist in tasks.
PCA can only capture linear manifold structures and
therefore does not perform well. LEGDP and SC can
achieve comparable performance, but SC needs the
user to pre-specify the parameter k.

7.3.2 Parameter Selection for LEGDP

The parameters of LEGDP include the number of
selected eigenvectors in LE (i.e. the dimensionality
D), the truncation level K of the variational distri-
bution for the infinite Gaussian mixtures (see ap-
pendix) and hyperparameters ay and by of GDP which
encode the prior knowledge for the variance (vari-
ance=1/precision) of each Gaussian component. In
this section we explore how to set these parameters
in practice.

We vary these parameters and investigate their
impact on the number of learned clusters and the
clustering performance (F1 and NMI). The results are
shown in Figures 5 and 6. For the sake of clarity, we
omit the results for 5p-Lab. The trends for 5p-Lab are
very similar to those shown in the figures. Figures 5(a)
and 6(a) give the results for D. As can be seen, too
small D indicates a subspace of low discriminative
power and therefore the number of clusters is too
small and the performance is bad. On the contrary,
too large D leads to the sparsity problem (i.e. curse
of dimensionality). Hence, the algorithm learns too
many clusters and the performance also starts to
decrease. We find D € [25,35] generally results in
good performance. ay and by together give a prior for
the cluster precision \i, i.e. E(A\g;) = ao/by. Here we
fix by = 1 and vary ag/by by taking the average of the
sample precisions of all dimensions as the unit. We
find there is a wide range of safe values, i.e. ao/bo
between 80 and 150+ (average sample precision),
in which LEGDP can achieve reasonable numbers
of clusters (Figure 5(b)) and good performance (Fig-
ure 6(b)). This implies that the model behavior is not
very sensitive to prior hyperparameters. Finally, as
shown in Figures 5(c) and 6(c), the parameter 7" shows
little influence on the modeling results, as long as it
is assigned a value significantly higher than the real
number of tasks.

7.4 Fine-grained Knowledge Mining

In this section, we show the results of fine-grained
knowledge mining by the d-iHMM model. We only
show the results for Surf-Lab. The observations on
Surf-IBM are very similar. The basic iHMM model
is employed for comparison. Since it is difficult and
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TABLE 7
Performance comparison of different clustering methods on the Surf-Lab dataset.
3p-Lab 5p-Lab Surf-Lab
Method  \pre— FT NMI [ Puriy  FI  NMT | Purly FI  NMI
LEGDP 768 956 772 | /51 953 /64 | 667 947
SC 762 948 753 | 721 948 /33 | 658 933
PCAGDP | 414 562 448 | 45/ .66/ 484 | 448 685
80 80 80
-£-3p-Lab —4-3p-Lab
—*-Surf-Lab 70 —*-Surf-Lab
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% 60 % 60 k % 60
= = =
5} ] © 50
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b4 b4 pz4
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Fig. 5. Number of learned clusters by LEGDP when varying (a) D, (b) ag / by and (c) K.
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Fig. 6. Performance of LEGDP when varying (a) D, (b) ag / by and (c) K.
laborious to perform quantitative evaluation by man- § 5 “A-d—iHMM
ual labeling, the models are evaluated by an intuitive Q4 —=iHMM
measure and case studies. The hyperparameters of o
d-iHMM and iHMM are set as follows: hg = 0.5, 5 3
ao =4, by =2, ay, = 3 and b,, = 6. The additional < ol|4
hyperparameter ¢, of d-iHMM is set to 0.25. 2
Our goal is to learn different states (micro-aspects) e ;
in a textually cohesive task. The intuition is that the O o2 S ARY
learned states should have low intra-entropies and 0 20 40 51
Task No.

high inter-distances between them. Therefore, we use
the average state entropy divided by the average pair-
wise distance between states as an intuitive measure
to evaluate the results:

%Zp(_ > pilog(pi))
STy Lp Lazp 3K L(p.q) + KL(q,p))’

where S is the total number of states, K L(-) represents
the KL-Divergence function and p, ¢ represent the
empirical unigram distributions for two learned states
estimated by aggregating all the associated sessions.
The unigram distributions are defined on the 100
most frequent words in the task. A good set of states

(11)

Fig. 7. Comparison of d-iHMM and iHMM with respect
to the average state entropy divided by the average
pairwise KL-Divergence between states.

should have a low value of this measure. The results
are shown in Figure 7. For some small-size tasks,
either d-iHMM or iHMM outputs only one state. The
results of these tasks are omitted since the measure
is undefined. We can see from Figure 7 that d-iHMM
can learn better states for almost all the tasks.

The top five words of each learned state’s unigram
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TABLE 8
Micro-aspects mined by d-iHMM for the task
“clustering study.”

Top five words of the unigram model
Background || clustering, endnote, pdf, uc, data

state 1 spectral, clustering, tutorial, algorithms, ma-
trix

state 2 sequence, protein, sequences, oxford, press

state 3 mean, nonparametric, shift, vision, blurring

state 4 detection, evolving, online, news, topic

state 5 pass, single, clustering, new, cluster

state 6 segment, audio, segments, broadcast, segmen-
tation

state 7 algorithm, spatial, density, noise, fuzzy

state 8 smooth, time, gene, function, expression

TABLE 9
Micro-aspects mined by iHMM for the task “clustering
study.”

Top five words of the unigram model

state 1 || clustering, spectral, pdf, endnote, tutorial

state 2 || clustering, algorithm, fuzzy, uc, evolving

state 3 || clustering, segment, endnote, line, google

state 4 clustering, segment, news, endnote, music

state 5 clustering, nonparametric, mean, endnote,
shift

state 6 || endnote, clustering, pdf, algorithm, evolv-
ing

state 7 || clustering, endnote, single, pass, sequence

state 8 || clustering, cluster, pass, single, pdf

state 9 || clustering, pdf, endnote, spectral, graph

state 10 || clustering, smooth, endnote, uc, time

model for the task “clustering study” are shown in
Tables 8 (d-iHMM) and 9 (iHMM). Table 8 shows that
d-iHMM successfully summarizes different pieces of
fine-grained knowledge into different states. These
include different clustering methods such as spectral
clustering (state 1), single-pass clustering (state 5)
and density based methods (state 7), and different
application settings, e.g. protein sequence clustering
(state 2), news event detection (state 4). The iHMM
model generates 10 states for “clustering study” (Ta-
ble 9). We find iHMM tends to mess up different
micro-aspects. For example, both state 3 and state 4
contain “segment clustering”, and both state 7 and
state 8 have “single-pass clustering”. It sometimes
mixes different micro-aspects, e.g. state 7 also contains
“sequence clustering”. As another example, we show
the micro-aspects learned for the task “Programming
contests” by d-iHMM and iHMM in Table 10 and 11,
respectively. This task is due to a user who was
participating in Topcoder® contests. Both models learn
four states for this task. We can see from Table 10 that
this user was learning some classic algorithms and
data structures: sorting, maximum flow and black-
red trees. The iHMM model again fails to separate
different micro-aspects (Table 11). The explanation is

3. http:/ /www.topcoder.com/

that different micro-aspects under the same task share
common background textual characteristics. iHMM
tries to model the background content in each state
independently, which leads to low discriminative
power. On the contrary, d-iHMM has higher discrimi-
native power by modeling background words in each
state by a common background unigram model.

TABLE 10
Micro-aspects mined by d-iHMM for the task
“Programming contests”.

Top five words of the unigram model
Background contests, sort, review, black, tree
state 1 black, tree, node, red, nodes
state 2 flow, maximum, search, contests, capacity
state 3 sort, merge, list, insertion, sorting
state 4 class, review, contests, match, track

TABLE 11
Micro-aspects mined by iHMM for the task
“Programming contests”.

Top five words of the unigram model
state 1 sort, black, tree, node, data
state 2 flow, contests, review, search, overview
state 3 virtual, contests, review, class, algorithm
state 4 || contests, sort, review, black, tree

7.5 Running time

We test the efficiency of the whole framework. We
collect more Web surfing packets from IBM’s gateway
to form datasets of various sizes. The running time of
LEGDP and d-iHMM is shown in Figure 8. The tests
were run in MATLAB on a PC with Intel Core i7 and
8G memory. The running time of LEGDP seems linear
w.r.t the number of sessions, while that of d-iHMM
shows a slightly accelerated growth (due to M). The
observations conform to the analysis in Section 6. We
set the number of sampling iterations to 500 for d-
iHMM. d-iHMM is more costly. Fortunately, the com-
putation for different tasks can be parallelized. The
advisor search phase only requires a few milliseconds
since its main cost is one matrix vector multiplication.

30 100
-4-LEGDP A -A-d-iHMM A
80
B2 O
[0] [0]
g £ 60
= [
=10 0
G0 5000 10000 0 50 100
Number of sessions Number of sessions per task
(a) LEGDP (b) d-iIHMM

Fig. 8. Running time of LEGDP and d-iHMM.
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8 CONCLUSIONS

We introduced a novel problem, fine-grained knowl-
edge sharing in collaborative environments, which is
desirable in practice. We identified digging out fine-
grained knowledge reflected by people’s interactions
with the outside world as the key to solving this
problem. We proposed a two-step framework to mine
fine-grained knowledge and integrated it with the
classic expert search method for finding right advi-
sors. Experiments on real Web surfing data showed
encouraging results.

There are open issues for this problem. (1) The fine-
grained knowledge could have a hierarchical struc-
ture. For example, “Java I0” can contain “File I0” and
“Network I0” as sub-knowledge. We could iteratively
apply d-iHMM on the learned micro-aspects to derive
a hierarchy, but how to search over this hierarchy
is not a trivial problem. (2) The basic search model
can be refined, e.g. incorporating the time factor since
people gradually forget as time flows. (3) Privacy is
also an issue. In this work, we demonstrate the fea-
sibility of mining task micro-aspects for solving this
knowledge sharing problem. We leave these possible
improvements to future work.
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