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CSE 5525: Foundations of

Speech and Language Processing

Week 3, Lecture 1: 

Part-Of-Speech Tagging,

Sequence Labeling, and

Hidden Markov Models (HMMs)

Huan Sun

The Ohio State University

Many thanks for slides from Prof. Ray Mooney at UT Austin



Logistics

• HW#1 due tonight

• HW#2 OUT

– 4 weeks (Due on 10/07/2020)

– BUT, start early!!! (More challenging & lots 

coming up in OCT)

Reading lecture notes (given in the last column of 

our course schedule) is necessary to fully 

understand this week's topics (e.g., HMM/CRF)
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http://web.cse.ohio-state.edu/~sun.397/courses/au2020/cse5525.html


Part Of Speech Tagging

• Annotate each word in a sentence with 

a part-of-speech marker (i.e., syntactic role).

• Lowest level of syntactic analysis.

John saw the saw and decided to take it to the table.

NNP VBD DT NN CC VBD TO VB PRP IN DT NN

• Useful for subsequent syntactic parsing 

and word sense disambiguation.
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English POS Tagsets

• Original Brown corpus used a large set of 

87 POS tags.

• Most common in NLP today is the Penn 

Treebank set of 45 tags.

– Tagset used in these slides.

– Reduced from the Brown set for use in the 

context of a parsed corpus (i.e. treebank).

• The C5  tagset used for the British National 

Corpus (BNC) has 61 tags.
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Penn Treebank Tagset: 45 Tags



Open vs. Closed Class Tags

Open class categories have a large number of 

words and new ones are easily invented.

– Nouns (Googler, textlish), Verbs (Google), 

Adjectives (geeky), Abverb (automagically)
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• Open class categories have a large number 

of words and new ones are easily invented.

– Nouns (Googler, textlish), Verbs (Google), 

Adjectives (geeky), Abverb (automagically)

• Closed class categories are composed of 

a small, fixed set of grammatical 

function words for a given language.

– Pronouns, Prepositions, Modals, 

Determiners, Particles, Conjunctions

– e.g., "among" "down" 9

Open vs. Closed Class Tags



10

Ambiguity in POS Tagging

• “Like” can be a verb or a preposition

– I like/? candy.

– Time flies like/? an arrow.
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Ambiguity in POS Tagging

• “Like” can be a verb or a preposition

– I like/VBP candy.

– Time flies like/IN an arrow. (preposition)

• “Around” can be a preposition, particle, or 

adverb
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Penn Treebank Tagset: 45 Tags
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Ambiguity in POS Tagging

• “Like” can be a verb or a preposition

– I like/VBP candy.

– Time flies like/IN an arrow.

• “Around” can be a preposition, particle, or 

adverb

– I bought it at the shop around/IN the corner.

– I never got around/RP to getting a car.

– A new Prius costs around/RB $25K.
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POS Tagging Process

• Usually assume a separate initial tokenization process that 
separates and/or disambiguates punctuation, including 
detecting sentence boundaries.

• Degree of ambiguity in English (based on Brown corpus)

– 11.5% of word types are ambiguous.

– 40% of word tokens are ambiguous.

• Average POS tagging disagreement amongst expert human 
judges for the Penn treebank was 3.5%
– Based on correcting the output of an initial automated tagger, 

which was deemed to be more accurate than tagging from scratch.

• Baseline: Picking the most frequent tag for each specific 
word can give about 90% accuracy

– Even higher if use model for unknown words for Penn Treebank 
tagset.
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POS Tagging Approaches

• Rule-Based: Human crafted rules based on lexical 
and other linguistic knowledge.

• Learning-Based: Trained on human annotated 
corpora like the Penn Treebank.

– Statistical models: Hidden Markov Model (HMM),
Maximum Entropy Markov Model (MEMM), 
Conditional Random Field (CRF)

– Rule learning: Transformation Based Learning (TBL)

– Neural networks: Recurrent networks like Long Short 
Term Memory (LSTMs)

• Generally, learning-based approaches have been 
found to be more effective overall, taking into 
account the total amount of human expertise and 
effort involved.
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Problems with Sequence Labeling as 

Classification

• Not easy to integrate information from 

category of tokens on both sides.

• Difficult to propagate uncertainty between 

decisions and “collectively” determine the 

most likely joint assignment of categories to 

all the tokens in a sequence.

There are relationships between the tags!
Noun-Verb is more likely than Verb-Verb

More explanations in Section 7.1, Eisenstein.
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Probabilistic Sequence Models

• Probabilistic sequence models allow 

integrating uncertainty over multiple, 

interdependent classifications and 

collectively determine the most likely 

global assignment.

• Two standard models

– Hidden Markov Model (HMM)

– Conditional Random Field (CRF)
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Markov Model / Markov Chain

• A finite state machine with probabilistic 

state transitions.

• Q: What is the Markov assumption?
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Markov Model / Markov Chain

• A finite state machine with probabilistic 

state transitions.

• Makes Markov assumption that next state 

only depends on the current state and 

independent of previous history.
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Sample Markov Model for POS

0.95
0.9

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb

Refer to Page 4 

of the slides for 

tag meaning

POS tags are states; numbers are state 

transition probabilities
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Sample Markov Model for POS

0.95
0.9

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb

Refer to Page 4 

of the slides for 

tag meaning

What is the probability of observing "PropNoun Verb Det Noun" as a 

sequence?
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Sample Markov Model for POS

0.95
0.9

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb

P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076

Refer to Page 4 

of the slides for 

tag meaning

What is the probability of observing "PropNoun Verb Det Noun" as a 

sequence?
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Hidden Markov Model for Sequence Labeling 

(e.g., POS tagging)

• Probabilistic generative model for sequences.

• Assume an underlying set of hidden (unobserved, 
latent) states in which the model can be (e.g. parts of 
speech).

• Assume probabilistic transitions between states over 
time (e.g. transition from POS to another POS as 
sequence is generated).

• Assume a probabilistic generation of tokens from 
states (e.g. words generated for each POS).
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Sample HMM for POS
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95
0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bitstart
0.1

0.5

0.4



30

Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Formal Definition of an HMM

• A set of N +2 states S={s0,s1,s2, … sN, sF}
– Distinguished start state: s0

– Distinguished final state: sF

• A set of M possible observations V={v1,v2…vM}

• A state transition probability distribution A={aij}

• Observation probability distribution for each state j, B={bj(k)}

• Total parameter set λ={A,B}

FjiNjisqsqPa itjtij ===== + ,0 and ,1         )|( 1

Mk1   1     )|at  ()( == NjsqtvPkb jtkj
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j
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HMM Generation Procedure

• To generate a sequence of T observations:  

O = o1 o2 … oT

Set initial state q1=s0

For t = 1 to T

1. Transit to another state qt+1=sj based on transition

distribution aij for state qt

2. Pick an observation ot=vk based on being in state qt using

distribution bqt (k)

Practice the sample HMM 

generation in previous slides
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Three Useful HMM Tasks

• Observation Likelihood: To classify and 

order sequences.

• Most likely state sequence (Decoding): To 

tag each token in a sequence with a label.

• Maximum likelihood training (Learning): To 

train models to fit empirical training data.
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HMM: Observation Likelihood

• Given a sequence of observations, O, and a model 
with a set of parameters λ={A, B}, what is the 
probability that this observation was generated by 
this model: P(O| λ) ?

• Allows HMM to be used as a language model: A 
formal probabilistic model of a language that 
assigns a probability to each string saying how 
likely that string was to have been generated by 
the language.

• Useful for two tasks:
– Sequence Classification

– Most Likely Sequence
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Sequence Classification

• Assume an HMM is available for each category 
(i.e. language).

• What is the most likely category for a given 
observation sequence, i.e. which category’s HMM 
is most likely to have generated it?

• Used in speech recognition to find most likely 
word model to have generate a given  sound or 
phoneme sequence.

Austin Columbus

? ?

P(O | Austin) > P(O | Columbus) ?

ah  s  t  e  n

O
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Most Likely Sequence

• Of two or more possible sequences, which 
one was most likely generated by a given 
model?

• Used to score alternative word sequence 
interpretations in speech recognition.

Ordinary English

dice precedent core

vice president Gore

O1

O2

?

?

P(O2 | OrdEnglish) > P(O1 | OrdEnglish) ?
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HMM: Observation Likelihood

Naïve Solution

• Consider all possible state sequences, Q, of length 
T that the model could have traversed in 
generating the given observation sequence.

• Compute the probability of a given state sequence 
from A, and multiply it by the probabilities of 
generating each of given observations in each of 
the corresponding states in this sequence to get 
P(O,Q| λ) = P(O| Q, λ) P(Q| λ) .

• Sum this over all possible state sequences to get 
P(O| λ).

• Computationally complex: ??
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HMM: Observation Likelihood

Naïve Solution

• Consider all possible state sequences, Q, of length 
T that the model could have traversed in 
generating the given observation sequence.

• Compute the probability of a given state sequence 
from A, and multiply it by the probabilities of 
generating each of given observations in each of 
the corresponding states in this sequence to get 
P(O,Q| λ) = P(O| Q, λ) P(Q| λ) .

• Sum this over all possible state sequences to get 
P(O| λ).

• Computationally complex: O(TNT).
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HMM: Observation Likelihood

Efficient Solution

• Due to the Markov assumption, the probability of 

being in any state at any given time t only relies 

on the probability of being in each of the possible 

states at time t−1.

• Forward Algorithm: Uses dynamic programming 

to exploit this fact to efficiently compute 

observation likelihood in O(TN2) time.

– Compute a forward trellis that compactly and implicitly 

encodes information about all possible state paths.



Forward Trellis 
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s1

s2

sN

•

•

•

•

•

•

s0
sF

•

•

•

•

•

•

•

•

•

• • •

• • •

• • •

• • •

t1 t2 t3 tT-1 tT

• Continue forward in time until reaching final time 

point and sum probability of ending in final state.



Forward Probabilities

• Let \alpha_t(j) be the probability of being in 

state j after seeing the first t observations 

(by summing over all initial paths leading to 

j).

45
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Forward Step
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s1

s2

sN

•

•

•

sj

a1j

a2j

aNj

a2j

• Consider all possible ways of 

getting to sj at time t by coming 

from all possible states si and 

determine probability of each.

• Sum these to get the total 

probability of being in state sj at 

time t while accounting for the 

first t −1 observations.

• Then multiply by the probability 

of actually observing ot in sj.

\alpha_{t-1}(i) \alpha_{t}(j)



Computing the Forward Probabilities

• Initialization

• Recursion

• Termination
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Forward Computational Complexity

• Requires only O(TN2) time to compute the 

probability of an observed sequence given a 

model. Why?

48



Forward Computational Complexity

• Requires only O(TN2) time to compute the 

probability of an observed sequence given a 

model.

• Exploits the fact that all state sequences 

must merge into one of the N possible states 

at any point in time and the Markov 

assumption that only the last state effects 

the next one.

49
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Most Likely State Sequence (Decoding)

• Given an observation sequence, O, and a model, 

λ, what is the most likely state 

sequence, Q=q1,q2,…qT, that generated this sequence 

from this model?

John gave the dog an apple. 



51

Most Likely State Sequence (Decoding)

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 

"start" state "final" state
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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HMM: Most Likely State Sequence

Efficient Solution

• Obviously, could use naïve algorithm based 

on examining every possible state sequence of 

length T.

• Dynamic Programming can also be used to 

exploit the Markov assumption and efficiently 

determine the most likely state sequence for a 

given observation and model.

• Standard procedure is called the Viterbi 

algorithm (Viterbi, 1967) and also has O(TN2) 

time complexity.



Viterbi Scores

• Recursively compute the probability of the most 

likely subsequence of states that accounts for the 

first t observations and ends in state sj.
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• Also record “backpointers” that subsequently 

allow backtracing the most probable state sequence.

▪ btt(j) stores the state at time t-1 that maximizes the 

probability that system was in state sj at time t (given 

the first t observations).



Computing the Viterbi Scores

• Initialization

• Recursion

• Termination
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Analogous to Forward algorithm except take max instead of sum



Computing the Viterbi Backpointers

• Initialization

• Recursion

• Termination
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Final state in the most probable state sequence. Follow 

backpointers to initial state to construct full sequence.



Viterbi Backpointers 
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s1

s2

sN

•

•

•

•

•

•

s0
sF

•

•

•

•

•

•

•

•

•

• • •

• • •

• • •

• • •

t1 t2 t3 tT-1 tT



Viterbi Backtrace 
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s1

s2

sN

•

•

•

•

•

•

s0
sF

•

•

•

•

•

•

•

•

•

• • •

• • •

• • •

• • •

t1 t2 t3 tT-1 tT

Most likely Sequence: s0 sN s1 s2 …s2 sF



HMM Learning

• Supervised Learning: All training 

sequences are completely labeled (tagged).

• Unsupervised Learning: All training 

sequences are unlabelled (but generally 

know the number of tags, i.e. states; e.g., 

in clustering).

• Semisupervised Learning: Some training 

sequences are labeled, most are unlabeled.

64
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Supervised HMM Training

• If training sequences are labeled (tagged) with the 
underlying state sequences that generated them, 
then the parameters, λ={A,B} can all be estimated 
directly.

Supervised

HMM

Training

John ate the apple

A dog bit Mary

Mary hit the dog

John gave Mary the cat.

.

.

.

Training Sequences

Det Noun PropNoun Verb 



Supervised Parameter Estimation

• Estimate state transition probabilities based on tag 

bigram and unigram statistics in the labeled data.

• Estimate the observation probabilities based on 

tag/word co-occurrence statistics in the labeled data.

• Use appropriate smoothing if training data is sparse.
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Learning and Using HMM Taggers

• Use a corpus of labeled sequence data to 

easily construct an HMM using supervised 

training.

• Given a novel unlabeled test sequence to 

tag, use the Viterbi algorithm to predict the 

most likely (globally optimal) tag sequence.
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Evaluating Taggers

• Train on training set of labeled sequences.

• Possibly tune parameters (if any) based on 

performance on a development set.

• Measure accuracy on a disjoint test set.

• Generally measure tagging accuracy, i.e. the 

percentage of tokens tagged correctly.

• Accuracy of most modern POS taggers, including 

HMMs is 96−97% (for Penn tagset trained on 

about 800K words) .

– Generally matching human agreement level.
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