CSE 5525: Foundations of

Speech and Language Processing

Week 3, Lecture 1:
 Part-Of-Speech Tagging, Sequence Labeling, and Hidden Markov Models (HMMs)

Huan Sun
 The Ohio State University

Many thanks for slides from Prof. Ray Mooney at UT Austin

Logistics

- HW\#1 due tonight
- HW\#2 OUT
- 4 weeks (Due on 10/07/2020)
- BUT, start early!!! (More challenging \& lots coming up in OCT)

Reading lecture notes (given in the last column of our course schedule) is necessary to fully understand this week's topics (e.g., HMM/CRF)

Part Of Speech Tagging

- Annotate each word in a sentence with a part-of-speech marker (i.e., syntactic role).
- Lowest level of syntactic analysis.

John saw the saw and decided to take it to the table. NNP VBD DT NN CC VBD TO VB PRP IN DT NN

- Useful for subsequent syntactic parsing and word sense disambiguation.

English POS Tagsets

- Original Brown corpus used a large set of 87 POS tags.
- Most common in NLP today is the Penn Treebank set of 45 tags.
- Tagset used in these slides.
- Reduced from the Brown set for use in the context of a parsed corpus (i.e. treebank).
- The C5 tagset used for the British National Corpus (BNC) has 61 tags.

Penn Treebank Tagset: 45 Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	"	right quote	, or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, , , \{, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \},>
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:; ... --
RP	particle	$u p$, off			

Open vs. Closed Class Tags

Open class categories have a large number of words and new ones are easily invented.

- Nouns (Googler, textlish), Verbs (Google), Adjectives (geeky), Abverb (automagically)

Open vs. Closed Class Tags

- Open class categories have a large number of words and new ones are easily invented.
- Nouns (Googler, textlish), Verbs (Google), Adjectives (geeky), Abverb (automagically)
- Closed class categories are composed of a small, fixed set of grammatical function words for a given language.
- Pronouns, Prepositions, Modals,

Determiners, Particles, Conjunctions

- e.g., "among" "down"

Ambiguity in POS Tagging

- "Like" can be a verb or a preposition - I like/? candy.
- Time flies like/? an arrow.

Ambiguity in POS Tagging

- "Like" can be a verb or a preposition - I like/VBP candy.
- Time flies like/IN an arrow. (preposition)
- "Around" can be a preposition, particle, or adverb

Penn Treebank Tagset: 45 Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	"	right quote	, or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, , , \{, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \},>
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:; ... --
RP	particle	$u p$, off			

Ambiguity in POS Tagging

- "Like" can be a verb or a preposition
- I like/VBP candy.
- Time flies like/IN an arrow.
- "Around" can be a preposition, particle, or adverb
- I bought it at the shop around/IN the corner.
- I never got around/RP to getting a car.
- A new Prius costs around/RB $\$ 25 \mathrm{~K}$.

POS Tagging Process

- Usually assume a separate initial tokenization process that separates and/or disambiguates punctuation, including detecting sentence boundaries.
- Degree of ambiguity in English (based on Brown corpus)
- 11.5% of word types are ambiguous.
- 40% of word tokens are ambiguous.
- Average POS tagging disagreement amongst expert human judges for the Penn treebank was 3.5\%
- Based on correcting the output of an initial automated tagger, which was deemed to be more accurate than tagging from scratch.
- Baseline: Picking the most frequent tag for each specific word can give about 90% accuracy
- Even higher if use model for unknown words for Penn Treebank tagset.

POS Tagging Approaches

- Rule-Based: Human crafted rules based on lexical and other linguistic knowledge.
- Learning-Based: Trained on human annotated corpora like the Penn Treebank.
- Statistical models: Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF)
- Rule learning: Transformation Based Learning (TBL)
- Neural networks: Recurrent networks like Long Short Term Memory (LSTMs)
- Generally, learning-based approaches have been found to be more effective overall, taking into account the total amount of human expertise and effort involved.

Problems with Sequence Labeling as Classification

- Not easy to integrate information from category of tokens on both sides.
- Difficult to propagate uncertainty between decisions and "collectively" determine the most likely joint assignment of categories to all the tokens in a sequence.

There are relationships between the tags!
Noun-Verb is more likely than Verb-Verb
More explanations in Section 7.1, Eisenstein.

Probabilistic Sequence Models

- Probabilistic sequence models allow integrating uncertainty over multiple, interdependent classifications and collectively determine the most likely global assignment.
- Two standard models
- Hidden Markov Model (HMM)
- Conditional Random Field (CRF)

Markov Model / Markov Chain

- A finite state machine with probabilistic state transitions.
- Q: What is the Markov assumption?

Markov Model / Markov Chain

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

Sample Markov Model for POS

POS tags are states; numbers are state

Sample Markov Model for POS

What is the probability of observing 'PropNoun Verb Det Noun" as a sequence?

Sample Markov Model for POS

What is the probability of observing 'PropNoun Verb Det Noun" as a sequence?

Hidden Markov Model for Sequence Labeling (e.g., POS tagging)

- Probabilistic generative model for sequences.
- Assume an underlying set of hidden (unobserved, latent) states in which the model can be (e.g. parts of speech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a probabilistic generation of tokens from states (e.g. words generated for each POS).

Sample HMM for POS

Sample HMM Generation

Formal Definition of an HMM

- A set of $N+2$ states $S=\left\{s_{0}, s_{1}, s_{2}, \ldots s_{\mathrm{N}}, s_{\mathrm{F}}\right\}$
- Distinguished start state: s_{0}
- Distinguished final state: s_{F}
- A set of M possible observations $V=\left\{v_{1}, v_{2} \ldots v_{M}\right\}$
- A state transition probability distribution $A=\left\{a_{i j}\right\}$

$$
\begin{aligned}
& a_{i j}=P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right) \quad 1 \leq i, j \leq N \text { and } i=0, j=F \\
& \sum_{j=1}^{N} a_{i j}+a_{i F}=1 \quad 0 \leq i \leq N
\end{aligned}
$$

- Observation probability distribution for each state $j, B=\left\{b_{j}(k)\right\}$

$$
b_{j}(k)=P\left(v_{k} \text { at } t \mid q_{t}=s_{j}\right) \quad 1 \leq j \leq N \quad 1 \leq \mathrm{k} \leq \mathrm{M}
$$

- Total parameter set $\lambda=\{A, B\}$

HMM Generation Procedure

- To generate a sequence of T observations: $O=o_{1} o_{2} \ldots o_{T}$

Set initial state $q_{1}=s_{0}$
For $t=1$ to T

1. Transit to another state $q_{t+1}=s_{j}$ based on transition distribution $a_{i j}$ for state q_{t}
2. Pick an observation $o_{t}=v_{k}$ based on being in state q_{t} using distribution $b q_{t}(k)$

Practice the sample HMM generation in previous slides

Three Useful HMM Tasks

- Observation Likelihood: To classify and order sequences.
- Most likely state sequence (Decoding): To tag each token in a sequence with a label.
- Maximum likelihood training (Learning): To train models to fit empirical training data.

HMM: Observation Likelihood

- Given a sequence of observations, O, and a model with a set of parameters $\lambda=\{\mathrm{A}, \mathrm{B}\}$, what is the probability that this observation was generated by this model: $\mathrm{P}(\mathrm{O} \mid \lambda)$?
- Allows HMM to be used as a language model: A formal probabilistic model of a language that assigns a probability to each string saying how likely that string was to have been generated by the language.
- Useful for two tasks:
- Sequence Classification
- Most Likely Sequence

Sequence Classification

- Assume an HMM is available for each category (i.e. language).
- What is the most likely category for a given observation sequence, i.e. which category's HMM is most likely to have generated it?
- Used in speech recognition to find most likely word model to have generate a given sound or phoneme sequence.

Most Likely Sequence

- Of two or more possible sequences, which one was most likely generated by a given model?
- Used to score alternative word sequence interpretations in speech recognition.

Ordinary English

$$
\mathrm{P}\left(O_{2} \mid \text { OrdEnglish }\right)>\mathrm{P}\left(O_{1} \mid \text { OrdEnglish }\right) ?
$$

HMM: Observation Likelihood Naïve Solution

- Consider all possible state sequences, Q, of length T that the model could have traversed in generating the given observation sequence.
- Compute the probability of a given state sequence from A, and multiply it by the probabilities of generating each of given observations in each of the corresponding states in this sequence to get $\mathrm{P}(O, Q \mid \lambda)=\mathrm{P}(O \mid Q, \lambda) \mathrm{P}(Q \mid \lambda)$.
- Sum this over all possible state sequences to get $\mathrm{P}(O \mid \lambda)$.
- Computationally complex: ??

HMM: Observation Likelihood Naïve Solution

- Consider all possible state sequences, Q, of length T that the model could have traversed in generating the given observation sequence.
- Compute the probability of a given state sequence from A, and multiply it by the probabilities of generating each of given observations in each of the corresponding states in this sequence to get $\mathrm{P}(O, Q \mid \lambda)=\mathrm{P}(O \mid Q, \lambda) \mathrm{P}(Q \mid \lambda)$.
- Sum this over all possible state sequences to get $\mathrm{P}(O \mid \lambda)$.
- Computationally complex: $\mathrm{O}\left(T N^{T}\right)$.

HMM: Observation Likelihood Efficient Solution

- Due to the Markov assumption, the probability of being in any state at any given time t only relies on the probability of being in each of the possible states at time $t-1$.
- Forward Algorithm: Uses dynamic programming to exploit this fact to efficiently compute observation likelihood in $\mathrm{O}\left(T N^{2}\right)$ time.
- Compute a forward trellis that compactly and implicitly encodes information about all possible state paths.

Forward Trellis

- Continue forward in time until reaching final time point and sum probability of ending in final state.

Forward Probabilities

- Let lalpha_t(j) be the probability of being in state j after seeing the first t observations (by summing over all initial paths leading to j).

$$
\alpha_{t}(j)=P\left(o_{1}, o_{2}, \ldots o_{t}, q_{t}=s_{j} \mid \lambda\right)
$$

Forward Step

- Consider all possible ways of getting to s_{j} at time t by coming from all possible states s_{i} and determine probability of each.
- Sum these to get the total probability of being in state s_{j} at time t while accounting for the
\alpha_\{t-1\}(i) \alpha_\{t\}(j) first $t-1$ observations.
- Then multiply by the probability of actually observing o_{t} in s_{j}.

Computing the Forward Probabilities

- Initialization

$$
\alpha_{1}(j)=a_{0 j} b_{j}\left(o_{1}\right) \quad 1 \leq j \leq N
$$

- Recursion

$$
\alpha_{t}(j)=\left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) \quad 1 \leq j \leq N, \quad 1<t \leq T
$$

- Termination

$$
P(O \mid \lambda)=\alpha_{T+1}\left(s_{F}\right)=\sum_{i=1}^{N} \alpha_{T}(i) a_{i F}
$$

Forward Computational Complexity

- Requires only $\mathrm{O}\left(T N^{2}\right)$ time to compute the probability of an observed sequence given a model. Why?

Forward Computational Complexity

- Requires only $\mathrm{O}\left(T N^{2}\right)$ time to compute the probability of an observed sequence given a model.
- Exploits the fact that all state sequences must merge into one of the N possible states at any point in time and the Markov assumption that only the last state effects the next one.

Most Likely State Sequence (Decoding)

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?

Most Likely State Sequence (Decoding)

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

Most Likely State Sequence

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

Most Likely State Sequence

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

Most Likely State Sequence

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

Most Likely State Sequence

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

Most Likely State Sequence

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

Most Likely State Sequence

- Given an observation sequence, O, and a model, λ, what is the most likely state sequence, $Q=q_{1}, q_{2}, \ldots q_{T}$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

HMM: Most Likely State Sequence Efficient Solution

- Obviously, could use naïve algorithm based on examining every possible state sequence of length T.
- Dynamic Programming can also be used to exploit the Markov assumption and efficiently determine the most likely state sequence for a given observation and model.
- Standard procedure is called the Viterbi algorithm (Viterbi, 1967) and also has $\mathrm{O}\left(\mathrm{TN}^{2}\right)$ time complexity.

Viterbi Scores

- Recursively compute the probability of the most likely subsequence of states that accounts for the first t observations and ends in state s_{j}.
$v_{t}(j)=\max _{q_{0}, q_{1}, \ldots, q_{t-1}} P\left(q_{0}, q_{1}, \ldots, q_{t-1}, o_{1}, \ldots, o_{t}, q_{t}=s_{j} \mid \lambda\right)$
- Also record "backpointers" that subsequently allow backtracing the most probable state sequence.
- $b t_{t}(j)$ stores the state at time $t-1$ that maximizes the probability that system was in state s_{j} at time t (given the first t observations).

Computing the Viterbi Scores

- Initialization

$$
v_{1}(j)=a_{0 j} b_{j}\left(o_{1}\right) \quad 1 \leq j \leq N
$$

- Recursion

$$
v_{t}(j)=\max _{i=1}^{N} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) \quad 1 \leq j \leq N, \quad 1<t \leq T
$$

- Termination

$$
P^{*}=v_{T+1}\left(s_{F}\right)=\max _{i=1}^{N} v_{T}(i) a_{i F}
$$

Analogous to Forward algorithm except take max instead of sum

Computing the Viterbi Backpointers

- Initialization

$$
b t_{1}(j)=s_{0} \quad 1 \leq j \leq N
$$

- Recursion

$$
N
$$

$$
b t_{t}(j)=\underset{i=1}{\operatorname{argmax}} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) \quad 1 \leq j \leq N, \quad 1 \leq t \leq T
$$

- Termination

$$
q_{T}^{*}=b t_{T+1}\left(s_{F}\right)=\stackrel{N}{\underset{i=1}{\operatorname{argmax}} v_{T}(i) a_{i F}, ~}
$$

Final state in the most probable state sequence. Follow backpointers to initial state to construct full sequence.

Viterbi Backpointers

Viterbi Backtrace

Most likely Sequence: $\mathrm{s}_{\mathbf{0}} \mathrm{s}_{\mathrm{N}} \mathrm{s}_{\mathbf{1}} \mathrm{s}_{\mathbf{2}} \ldots \mathrm{s}_{\mathbf{2}} \mathrm{S}_{\mathrm{F}}$

HMM Learning

- Supervised Learning: All training sequences are completely labeled (tagged).
- Unsupervised Learning: All training sequences are unlabelled (but generally know the number of tags, i.e. states; e.g., in clustering).
- Semisupervised Learning: Some training sequences are labeled, most are unlabeled.

Supervised HMM Training

- If training sequences are labeled (tagged) with the underlying state sequences that generated them, then the parameters, $\lambda=\{\mathrm{A}, \mathrm{B}\}$ can all be estimated directly.

Supervised Parameter Estimation

- Estimate state transition probabilities based on tag bigram and unigram statistics in the labeled data.

$$
a_{i j}=\frac{C\left(q_{t}=s_{i}, \mathrm{q}_{\mathrm{t}+1}=s_{j}\right)}{C\left(q_{t}=s_{i}\right)}
$$

- Estimate the observation probabilities based on tag/word co-occurrence statistics in the labeled data.

$$
b_{j}(k)=\frac{C\left(q_{i}=s_{j}, o_{i}=v_{k}\right)}{C\left(q_{i}=s_{j}\right)}
$$

- Use appropriate smoothing if training data is sparse.

Learning and Using HMM Taggers

- Use a corpus of labeled sequence data to easily construct an HMM using supervised training.
- Given a novel unlabeled test sequence to tag, use the Viterbi algorithm to predict the most likely (globally optimal) tag sequence.

Evaluating Taggers

- Train on training set of labeled sequences.
- Possibly tune parameters (if any) based on performance on a development set.
- Measure accuracy on a disjoint test set.
- Generally measure tagging accuracy, i.e. the percentage of tokens tagged correctly.
- Accuracy of most modern POS taggers, including HMMs is $96-97 \%$ (for Penn tagset trained on about 800 K words).
- Generally matching human agreement level.

