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Logistics

« HW#1 due tonight

« HW#2 OUT

— 4 weeks (Due on 10/07/2020)

— BUT, start early!!! (More challenging & lots
coming up in OCT)

Reading lecture notes (given in the last column of
our course schedule) Is necessary to fully
understand this week's topics (e.g., HMM/CRF)



http://web.cse.ohio-state.edu/~sun.397/courses/au2020/cse5525.html

Part Of Speech Tagging

 Annotate each word In a sentence with
a part-of-speech marker (i.e., syntactic role).

» Lowest level of syntactic analysis.

John saw the saw and decided to take 1t to the table.
NNP VBD DT NN CC vBD TOVB PRPINDT NN

 Useful for subsequent syntactic parsing
and word sense disambiguation.



English POS Tagsets

* Original Brown corpus used a large set of
87 POS tags.

» Most common in NLP today is the Penn
Treebank set of 45 tags.
— Tagset used In these slides.
— Reduced from the Brown set for use in the
context of a parsed corpus (i.e. treebank).
* The C5 tagset used for the British National
Corpus (BNC) has 61 tags.



Penn Treebank Tagset: 45 Tags

Tag  Description Example Tag Description Example
(0 coordin. conjunction and, but, or SYM symbol +.%, &
CD cardinal number one, two, three 170 “to’ ro

DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB verb, base form eat

FW  foreign word mea culpa VBD verb, past tense are

IN preposition/sub-conj of, in, by VBG verb, gerund eating

1] adjective vellow VBN verb, past participle earen

JJR  adj., comparative bigger VBP verb, non-3sg pres ear

AN adj., superlative wildest VBZ verb, 3sg pres eats

5. list item marker 1,2, One WDT wh-determiner which, that
MD  modal can, should WP  wh-pronoun what, who
NN  noun. sing. ormass [/lama WPS$ possessive wh- whose
NNS noun. plural llamas WRB wh-adverb how, where
NNP  proper noun, singular /BM $ dollar sign $

NNPS proper noun, plural  Carolinas B pound sign #

PDT predeterminer all, both * left quote ‘or®
POS  possessive ending s right quote " or

PRP  personal pronoun I, you, he ( left parenthesis LG <
PRPS possessive pronoun  your, one’s ) right parenthesis L)
RB adverb quickly, never comma :

RBR adverb, comparative fasrer sentence-final punc . ! ?

RBS adverb, superlative  fasrest mid-sentence punc  : ;.. —-
RP particle up, off




Open vs. Closed Class Tags

Open class categories have a large number of
words and new ones are easily invented.

— Nouns (Googler, textlish), Verbs (Google),
Adjectives (geeky), Abverb (automagically)



Open vs. Closed Class Tags

* Open class categories have a large number
of words and new ones are easily invented.

— Nouns (Googler, textlish), Verbs (Google),
Adjectives (geeky), Abverb (automagically)

» Closed class categories are composed of
a small, fixed set of grammatical
function words for a given language.

— Pronouns, Prepositions, Modals,
Determiners, Particles, Conjunctions

—e.g., "among" "down"



Ambiguity in POS Tagging

» “Like” can be a verb or a preposition
— | like/? candy.
— Time flies like/? an arrow.
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Ambiguity in POS Tagging

» “Like” can be a verb or a preposition
— | like/\VVBP candy:.
— Time flies like/IN an arrow. (preposition)

* “Around” can be a preposition, particle, or
adverb

11



Penn Treebank Tagset: 45 Tags

Tag  Description Example Tag Description Example
(0 coordin. conjunction and, but, or SYM symbol +.%, &
CD cardinal number one, two, three 170 “to’ ro

DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB verb, base form eat

FW  foreign word mea culpa VBD verb, past tense are

IN preposition/sub-conj of, in, by VBG verb, gerund eating

1] adjective vellow VBN verb, past participle earen

JJR  adj., comparative bigger VBP verb, non-3sg pres ear

AN adj., superlative wildest VBZ verb, 3sg pres eats

5. list item marker 1,2, One WDT wh-determiner which, that
MD  modal can, should WP  wh-pronoun what, who
NN  noun. sing. ormass [/lama WPS$ possessive wh- whose
NNS noun. plural llamas WRB wh-adverb how, where
NNP  proper noun, singular /BM $ dollar sign $

NNPS proper noun, plural  Carolinas B pound sign #

PDT predeterminer all, both * left quote ‘or®
POS  possessive ending s right quote " or

PRP  personal pronoun I, you, he ( left parenthesis LG <
PRPS possessive pronoun  your, one’s ) right parenthesis L)
RB adverb quickly, never comma :

RBR adverb, comparative fasrer sentence-final punc . ! ?

RBS adverb, superlative  fasrest mid-sentence punc  : ;.. —-
RP particle up, off
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Ambiguity in POS Tagging

» “Like” can be a verb or a preposition
— | like/VBP candy.
— Time flies like/IN an arrow.

* “Around” can be a preposition, particle, or
adverb
— | bought It at the shop around/IN the corner.
— | never got around/RP to getting a car.
— A new Prius costs around/RB $25K.

13



POS Tagging Process

« Usually assume a separate initial tokenization process that
separates and/or disambiguates punctuation, including
detecting sentence boundaries.

* Degree of ambiguity in English (based on Brown corpus)
— 11.5% of word types are ambiguous.
— 40% of word tokens are ambiguous.

« Average POS tagging disagreement amongst expert human

judges for the Penn treebank was 3.5%
— Based on correcting the output of an initial automated tagger,
which was deemed to be more accurate than tagging from scratch.
 Baseline: Picking the most frequent tag for each specific
word can give about 90% accuracy

— Even higher if use model for unknown words for Penn Treebank
tagset.

14



POS Tagging Approaches

 Rule-Based: Human crafted rules based on lexical

and other linguistic knowledge.

Learning-Based: Trained on human annotated
corpora like the Penn Treebank.

— Statistical models: Hidden Markov Model (HMM),
Maximum Entropy Markov Model (MEMM),
Conditional Random Field (CRF)

— Rule learning: Transformation Based Learning (TBL)

— Neural networks: Recurrent networks like Long Short
Term Memory (LSTMS)

Generally, learning-based approaches have been

found to be more effective overall, taking into

account the total amount of human expertise and

effort involved.

15



Problems with Sequence Labeling as
Classification

* Not easy to integrate information from
category of tokens on both sides.

» Difficult to propagate uncertainty between
decisions and “collectively” determine the
most likely joint assignment of categories to
all the tokens In a sequence.

There are relationships between the tags!
Noun-Verb is more likely than Verb-Verb

More explanations In Section 7.1, Eisenstein.



Probabilistic Sequence Models

 Probabilistic sequence models allow
Integrating uncertainty over multiple,
Interdependent classifications and
collectively determine the most likely
global assignment.

 Two standard models
— Hidden Markov Model (HMM)
— Conditional Random Field (CRF)

17



Markov Model / Markov Chain

» A finite state machine with probabilistic
state transitions.

* Q: What is the Markov assumption?

18



Markov Model / Markov Chain

» A finite state machine with probabilistic
state transitions.

» Makes Markov assumption that next state
only depends on the current state and
Independent of previous history.

19



Sample Markov Model for POS

POS tags are states; numbers are state
transition probabilities 0.1

m @ 0.5
\\0'95 0.9
(300)
0.
0.1
PropNounl_ 0.8
Refer to Page 4
0.5 0.1 |
0.1 0.25

/ of the slides for
tag meaning

20
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Sample Markov Model for POS

Whatis the probability of observing ""PropNoun Verb Det Noun' as a
sequence? 0.1

m @ 0.5
\\0'95 0.9
0.05
0.
0.1
PropNou 0.8
0.5 , 0.
0.1 0.25

start

Refer to Page 4
of the slides for
tag meaning

21



Sample Markov Model for POS

Whatis the probability of observing ""PropNoun Verb Det Noun' as a
sequence? 0.1

m @ 0.5
\\0'95 0.9
0.05
0.
0.1
PropNou 0.8
0.5 , 0.1
0.25

0.1
P(PropNounVerb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076

Refer to Page 4
of the slides for
tag meaning

start



Hidden Markov Model for Sequence Labeling
(e.g., POS tagging)

* Probabilistic generative model for sequences.

« Assume an underlying set of hidden (unobserved,
latent) states in which the model can be (e.g. parts of

speech).

« Assume probabilistic transitions between states over
time (e.g. transition from POS to another POS as
sequence Is generated).

« Assume a probabilistic generation of tokens from
states (e.g. words generated for each POS).

23



Sample HMM for POS

0,5 PropNoun
0.25

0.1
start

24



Sample HMM Generation




Sample HMM Generation

cat 0.1

do
car Ibed

pen apple
Noun 0.9

0.95 0.5

0,5 PropNoun (b

0.1
start
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Sample HMM Generation

0.1

0.9

0.5
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Sample HMM Generation

0.5

05 PropNoun 0.1
' 0.25 /

0.1

28



Sample HMM Generation

0.5

05 PropNoun 0.1
, 0.25 /

0.1
start ) john bit
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Sample HMM Generation

0.1

0.95 0.5

Noun 0.9

0,5 PropNoun 0.1
0.25

0.1
start ) john bit
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Sample HMM Generation

0.1

0.95 0.5

Noun 0.9

0,5 PropNoun 0.1
0.25

0.1
start ) john bit the
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Sample HMM Generation

0.1

0.95 0.5

0.9

05 PropNoun 0.1
' 0.25 /

0.1
start ) john bit the
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Sample HMM Generation

0.1

0.9

0.25 /

start john bit the apple

0.5
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Sample HMM Generation

0.25 /

start john bit the apple
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Formal Definition of an HMM

» Aset of N +2 states S={s,51,S,, ... Sy Sk}
— Distinguished start state: s,
— Distinguished final state: s¢

A set of M possible observations V={v,v,...V\}
A state transition probability distribution A={a;;}

aNij:P(qu:sj|qt=si) 1<i,Jj<Nandi=0, j=F
Y a;+a; =1 0<i<N
Observation probability distribution for each state J, B={b;(k)}

b;(k)=P(v att|g,=s;) 1<)J<N 1<k<M
Total parameter set A={A,B}

35



HMM Generation Procedure

» To generate a sequence of T observations:
O=0,0,... 07

Set initial state g,=s,
Fort=1to T
1. Transit to another state qy,;=s; based on transition
distribution a;; for state g

2. Pick an observation o,=v, based on being in state g, using
distribution bg, (k)

Practice the sample HMM
generationin previousslides 36



Three Useful HMM Tasks

» Observation Likelihood: To classify and
order sequences.

« Most likely state sequence (Decoding): To
tag each token in a sequence with a label.

« Maximum likelihood training (Learning): To
train models to fit empirical training data.

37



HMM: Observation Likelihood

 Given a sequence of observations, O, and a model
with a set of parameters A={A, B}, what Is the
probability that this observation was generated by
this model: P(O| A) ?

» Allows HMM to be used as a language model: A
formal probabilistic model of a language that
assigns a probability to each string saying how
likely that string was to have been generated by
the language.

 Useful for two tasks:
— Sequence Classification
— Most Likely Sequence

38



Sequence Classification

« Assume an HMM is available for each category
(1.e. language).
» What Is the most likely category for a glven

observation sequence, 1.€. which category’s HMM
Is most likely to have generated It?

 Used In speech recognition to find most likely
word model to have generate a given sound or
phoneme sequence.

Austin ~ P(O [Austin) > P(O | Columbus)?  Columbus 39



Most Likely Sequence

 Of two or more possible sequences, which

one was most likely generated by a given
model?

 Used to score alternative word sequence
Interpretations In speech recognition.

O,

dice preced@
@residen@
O,

P(O, | OrdEnglish) > P(O; | OrdEnglish) ?

Ordinary English

40



HMM: Observation Likelihood
Nailve Solution

Consider all possible state sequences, Q, of length
T that the model could have traversed In
generating the given observation seguence.

Compute the probability of a given state sequence
from A, and multiply it by the probabilities of
generating each of given observations in each of
the corresponding states in this sequence to get

P(O,Q|2) =P(O] Q, ) P(Q[A) .
Sum this over all possible state sequences to get
P(O| L).

Computationally complex: ??

41



HMM: Observation Likelihood
Nailve Solution

Consider all possible state sequences, Q, of length
T that the model could have traversed In
generating the given observation seguence.

Compute the probability of a given state sequence
from A, and multiply it by the probabilities of
generating each of given observations in each of
the corresponding states in this sequence to get

P(O,Q|2) =P(O] Q, ) P(Q[A) .
Sum this over all possible state sequences to get
P(O| L).

Computationally complex: O(TNT).

42



HMM: Observation Likelihood
Efficient Solution

« Due to the Markov assumption, the probability of
being In any state at any given time t only relies
on the probability of being in each of the possible
states at time t—1.

« Forward Algorithm: Uses dynamic programming
to exploit this fact to efficiently compute
observation likelihood in O(TN?) time.

— Compute a forward trellis that compactly and implicitly
encodes information about all possible state paths.

43



Forward Trellis

 Continue forward in time until reaching final time
point and sum probability of ending in final state.

44



Forward Probabilities

 Let\alpha t()) be the probability of being in
state | after seeing the first t observations
(by summing over all initial paths leading to

)).
at(j) — P(01’02""Ot’ 0 = 3; | 4)

45



Forward Step

\alpha_{t-1}(

« Consider all possible ways of
getting to s; at time t by coming
from all possible states s; and
determine probability of each.

« Sum these to get the total

probability of being In state s; at
_ _ time t while accounting for the
) alpha{t0) first t —1 observations.

« Then multiply by the probability
of actually observing o;in's;

46



Computing the Forward Probabilities

e Initialization

a,(]) = dy
* Recursion
- _
O‘t(j): Zat—l(i)aij
i=1 i

. Termination

P(O|A)=a;,,(S¢) = _ZNZO[T (Da

b, (0,) 1< j<N

b (0,) 1<j<N, 1<t<T

47



Forward Computational Complexity

 Requires only O(TN?) time to compute the
probability of an observed sequence given a
model. Why?

48



Forward Computational Complexity

 Requires only O(TN?) time to compute the
probability of an observed sequence given a

model.

 Exploits the fact that all state sequences
must merge into one of the N possible states
at any point in time and the Markov
assumption that only the last state effects
the next one.

49



Most Likely State Sequence (Decoding)

 Glven an observation sequence, O, and a model,
A, what is the most likely state
sequence, Q=qg4,d,,...qr, that generated this sequence

from this model?

. @ave the dog an@
50




Most Likely State Sequence (Decoding)

Given an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,dy,...0dr,
that generated this sequence from this model?

Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

. @ave the dog an@
51




Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,0y,...0r,
that generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an@

Det Noun PropNoun Verb

52



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,0y,...0r,
that generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an@

Det Noun PropNoun Verb

"'start'’ state "final"' state 53



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,0y,...0r,
that generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

=

N Y
John gave the dog an@

Det Noun PropNoun Verb
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Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,0y,...0r,
that generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

—

N
John gave the a'og an@

Det Noun PropNoun Verb
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Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,0y,...0r,
that generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

T\

N
John gave the a'og é‘m@

Det Noun PropNoun Verb

56



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what iIs the most likely state sequence,Q=q4,0y,...0r,
that generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

\\
\ A\
John gale the é'og é‘m@

Det Noun PropNoun Verb

57



HMM: Most Likely State Sequence
Efficient Solution

 Obviously, could use naive algorithm based
on examining every possible state sequence of
length T.

- Dynamic Programming can also be used to
exploit the Markov assumption and efficiently
determine the most likely state sequence for a
given observation and model.

» Standard procedure is called the Viterbi
algorithm (Viterbi, 1967) and also has O(TN?)
time complexity.

58



Viterbi Scores

 Recursively compute the probability of the most
likely subsequence of states that accounts for the

first t observations and ends In state S;j.

vi(i)=_max P(do,Ch-Gss OurennOr G =55 | 2)
« Also record “backpointers” that subsequently

allow backtracing the most probable state sequence.

= Dbt,(j) stores the state at time t-1 that maximizes the

probability that system was In state s; at time t (given
the first t observations).

59



Computing the Viterbi Scores

* |nitialization
v, (]) = anbj (0,) 1<)<N

e Recursion

N
V.(])= m_altxvt_l(i)aijbj (0,) 1< <N, 1<t<T

 Termination

N
P*=v;,,(S¢) = ITILE}X Vr ()3

Analogous to Forward algorithm except take max instead of sym



Computing the Viterbi Backpointers

 |nitialization
bt,(J)=s, 1< J<N
« Recursion

N
bt,(J) =argmaxv,,(a;b;(0,) 1< jJ<N, 1<t<T

1=1

 Termination

N
* B :
Gr * =bt;,, (¢ ) =argmaxv; (1)a
=1
Final state in the most probable state sequence. Follow
backpointers to initial state to construct full sequence.

61



Viterbi Backpointers

62



Viterbil Backtrace

Most likely Sequence: s;SyS; Sy --.85 Sk
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HMM Learning

» Supervised Learning: All training
sequences are completely labeled (tagged).

» Unsupervised Learning: All training
sequences are unlabelled (but generally
know the number of tags, I.e. states; e.g.,
In clustering).

« Semisupervised Learning: Some training
sequences are labeled, most are unlabeled.
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Supervised HMM Training

« |f training sequences are labeled (tagged) with the
underlying state sequences that generated them,
then the parameters, A={A,B} can all be estimated

directly.

Training Sequences

John ate the apple

A dog bit Mary

Mary hit the dog

John gave Mary the cat.

S,

Supervised
HMM

Training

Det Noun PropNoun \erb
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Supervised Parameter Estimation

 Estimate state transition probabilities based on tag
bigram and unigram statistics in the labeled data.

a9 — C(0 =5, 0 = Sj)
ij
C(qt = Si)
 Estimate the observation probabilities based on
tag/word co-occurrence statistics in the labeled data.

C . =S§.,0. =V
bj (k) _ (q| 1 k)
C(qi = Sj)
 Use appropriate smoothing If training data Is sparse.
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earning and Using HMM Taggers

 Use a corpus of labeled sequence data to
easily construct an HMM using supervised
training.

 Glven a novel unlabeled test sequence to
tag, use the Viterbi algorithm to predict the
most likely (globally optimal) tag sequence.
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Evaluating Taggers

Train on training set of labeled sequences.

Possibly tune parameters (if any) based on
performance on a development set.

Measure accuracy on a disjoint test set.

Generally measure tagging accuracy, I.e. the
percentage of tokens tagged correctly.

Accuracy of most modern POS taggers, including
HMMs is 96—97% (for Penn tagset trained on
about 800K words) .

— Generally matching human agreement level.
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