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Many thanks to Prof. Greg Durrett @ UT Austin for sharing his slides.



Administrivia

- Course website updates
> HW#1 has been out, due 09/09/2020

> Final Project: Start forming teams (2-3 students with diverse
background). Introduce yourself on Piazza and reach out to each
other.



This Lecture

>~ Linear classification fundamentals

- Three discriminative models: logistic regression, perceptron, SVM
- Different motivations but very similar update rules / inference!

> Optimization

>~ Sentiment analysis



Classification



Classification

- Datapoint z with label v € {0,1}

- Embed datapoint in a feature space f(x) € R"
but in this lecture f(x) and ¥ are interchangeable

- Linear decision rule: w' f(z)+b>0 /
w' f(z) >0 -

- Can delete bias if we augment feature
space:
P f(x) =10.5,1.6,0.3]
}
[0.5, 1.6, 0.3, 1]




Linear functions are powerful!
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f(x) = [x1, x2] f(x) = [x1, X2, X12, X22, X1X2]

- "Kernel trick” does this for “free,” but can be too expensive to use
in NLP applications, training is O(n*) instead of O(n - (num feats))



Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I'll neverjwatch again Negative

- Surface cues can basically tell you what’s going on here:
presence or absence of certain words (great, awful)

- Steps to classification:
> Turn examples like this into feature vectors
 Pick a model / learning algorithm
> Train weights on data to get our classifier



Feature Representation

this movie was great! would watch again Positive

-~ Convert this example to a vector using bag-of-words features

lcontains the] [contains al [contains was] [contains movie] [contains film]

fx) =[]0 0 1 1 0
» Very large vector space (size of vocabulary), sparse features (how many?)
» Requires indexing the features (mapping them to axes)

» More sophisticated feature mappings possible (tf-idf), as well as lots of
other features: n-grams, character n-grams, parts of speech, lemmas, ...



Generative vs. Discriminative Modeling

» Data point =z = (x4, ...,x,), label y € {0,1}
» Generative models: probabilistic models of P(x,y)

» Compute p(y|y), predict argmax, P(y|x)to classify

P(y)P(x|y)

x P(y)P(x|y) “proportional to”
P(x)

P(y|r) =

» Examples: Naive Bayes (see textbook), Hidden Markov Models

» Discriminative models model P(y|x) directly, compute argmax, P(y|r)
» Examples: logistic regression

» Cannot draw samples of x, but typically better classifiers



Logistic Regression



Logistic Regression

P(y = +|z) = logistic(w ' z) /
EXP ?: Wi L4 >
Py = +|z) = iz Wit
1 +exp(D ., w;z;)

—0 -4 —2 0 2 4 6

» To learn weights: maximize discriminative log likelihood of data (log P(y|x))

LHx;,Yi}i=1....n) = Zlog P(y;|lx;)  corpus-level LL




Logistic Regression




Logistic Regression

» Gradient of w; on positive example = z;;(1 — P(y; = +|z;))

If P(+) is close to 1, make very little update
Otherwise make w; look more like x;i, which will increase P(+)

» Gradient of w; on negative example — :I:jz-(—P(yj — —|—|£Ej))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;i, which will decrease P(+)

» Let y; = 1 for positive instances, y; = O for negative instances.

» Can combine these gradients as xi(y; — Py; = 1|z4))



Example

---------------------------------------------------------------------------------------------

' (1) this movie was great! would watch again -~ + % f(x;) = H 1]
(2) I expected a great movie and left happy + f(x2) = | 1]
(3) great potential but ended up being a flop  — f(xs) = 0

----------------------------------------------------------------------------------------------

[contains great] [contains movie]

w=[0,0] —— P(y=1] x1) =exp(0)/(1+exp(0)) =0.5 — g=[0.5,0.5]

w =[0.5,0.5] — P(y =1 | x2) = logistic(1) = 0.75 g =10.25, 0.25]

w =[0.08, 0.75] ... P(y = +|x) = logistic(w ' x)
- xi(y; — Py = 1|z;))



Regularization

» Regularizing an objective can mean many things, including an L2-norm
penalty to the weights:

> L(xj,y5) = Alwl3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» Early stopping
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping



Logistic Regression: Summary

P(y __ |$) __ eXP(Z?ﬂ w’bx’b)
1+ GXp(Z?Zl QUZCIZZ)

>~ Inference: for new X

argmax, P (y|z)
Ply=1lz) >05<w' 2 >0

 Learning: gradient ascent on the (regularized) discriminative log-
likelihood



Perceptron/SVM



Perceptron

- Simple error-driven learning approach similar to logistic
regression

Tz >0 ~ Logistic Regression

> Decision rule: w

- If incorrect: if positive, w < w +z | w< w+z(l-Ply=1|r))

ifnegative,wew—x w%w_$P(y:1|$)

- GQuaranteed to eventually separate the data if the data are
separable



Support Vector Machines

- Many separating hyperplanes — is there a best one?
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Support Vector Machines

- Many separating hyperplanes — is there a best one?
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Support Vector Machines

» Constraint formulation: find w via following quadratic program:
e o . 2
Minimize || |3 minimizing norm with

st. V5 w v, >1ify; =1 ﬁxec! nTa.rgin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!



N-Slack SVMs

T
Minimize ) |14(|2 - Zgﬂ'
j=1

S.1. \ (Zyj — 1)(?1]—'_37]) > 1 - gj

» The ¢ are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

0 . 0
8wi€j =01t gj — 0 awz

fj — (Qyj — 1)$ﬂ if fj > ()
— Lj4 if Y; — 1, —dLj3 if Y; — 0

» Looks like the perceptron! But updates more frequently



Gradients on Positive Examples

Logistic regression

i e T
z(1 — logistic(w ' x)) o5t \__JHinge (SVM)
E::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3
Perceptron 25 |
7
rifw' 'z < 0, else 0 . O 2
é:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::-'-'-'-'-'-'-'-'-'-'-'-':-'-'-'-'-'-'-'-'-'-'-'-E — 1.5 |
- SVM (ignoring regularizer) 1
- 0-1 Logistic
& if w' x < 1, else O |, Perceptronr' ~ K-
-3 -2 -1 0 2

*the left side shows the negative of the gradients of the loss functions, as
we need to *minimize* the loss functions (i.e., w=w-g).



Comparing Gradient Updates (Reference)

~ Logistic regression (unregularized) y = 1 for pos,
' ' O for neg

- Perceptron
(2y — 1)z if classified incorrectly

Read more connections here:_https://www.cs.utexas.edu/~gdurrett/courses/sp2020/perc-lr-connections.pdf



https://www.cs.utexas.edu/~gdurrett/courses/sp2020/perc-lr-connections.pdf

Optimization



Structured Prediction

» Four elements of a structured machine learning method:

» Model: probabilistic, max-margin, deep neural network

4

» Objective

35 F
3
2.5 F
o L
1.5 }
’

0.5 F \

0

-3 -2 -1 0 1 2 3

» Inference: just maxes and simple expectations so far, but will get harder

» Training: gradient descent?



Optimization

Stochastic gradient *ascent™ 0
} 5 w +— w + agq, L

g —
» Very simple to code up ow

» “First-order” technique: only relies on having gradient
» Can avg gradient over a few examples and apply update once (minibatch)

» Setting step size is hard (decrease when held-out performance worsens?)

- Newton’s method 52\
» Second-order technique W= W 2 L 9
» Optimizes quadratic instantly /

Inverse Hessian: n x h mat, expensive!

» Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian



AdaGrad

» Optimized for problems with sparse features

» Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

1

\/€ 4 Zt g2 .gti (smnoothed) sum of squared
T=LIT gradients from all updates

» Generally more robust than SGD, requires less tuning of learning rate

» Other techniques for optimizing deep models — more later!

Duchi et al. (2011)



Sentiment Analysis



Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but I liked it | =+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X” for all
X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Features # of | frequency or [[ NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [ 806 | 808 ] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Method RT-s MPQA

MNB-uni 779  85.3

MNB-bi «—— Naive Bayes is doing well!
SVM-uni 762  86.1

SVM-bi 777  86.7

NBSVM-uni | 78.1  85.3

NBSVM.bi | 794 863 Ng and Jordan (2002) — NB
RAE 768  85.7 can be better for small data

RAE-pretrain | [77.7  86.4

Voting-w/Rev. | 63.1 81.7

Rule 629  81.8

BoF-noDic. | 75.7  81.8 Before neural nets had taken off
BoF-w/Rev. | 764 84.1 — results weren't that great
Tree-CRF 77.3 86.1

BoWSVM - -

Kim (2014) CNNs 81.5 89.5 Wang and Manning (2012)



Sentiment Analysis

. Model Accurac Paper / Source Code
» Stanford Sentiment v per!
XLNet-Large (ensemble) (Yang et al., XLNet: Generalized Autoregressive Pretraining .
96.8 Official
Tree ba I k (SST) 2019) for Language Understanding cla
bi n a ry C I a SSiﬁ Catio n Improving Multi-Task Deep Neural Networks
MT-DNN-ensemble (Liu et al., 2019) 96.5 via Knowledge Distillation for Natural Language Official

Understanding

» Best systems now:

Snorkel MeTalL(ensemble) (Ratner et 96.2 Training Complex Models with Multi-Task Weak Official
. al., 2018) ' Supervision
large pretrained
MT-DNN (Liu et al.. 2019) 95 & Multi-Task Deep Neural Networks for Natural Official
N EtWO rkS K ' Language Understanding

Bidirectional Encoder BERT: Pre-training of Deep Bidirectional
- Representations from Transformers 94.9 ' ) Official
} 90 > 97 Over the P Transformers for Language Understanding

(Devlin et al., 2018)
last 2 years

Neural Semantic Encoder

, 89.7 Neural Semantic Encoders
(Munkhdalai and Yu, 2017)

Text Classification Improved by Integrating
BLSTM-2DCNN (Zhou et al., 2017) 89.5 Bidirectional LSTM with Two-dimensional Max
Pooling

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment analysis.md



Recap

 Logisicregresson: Ply = 1jz) = 17 S

Decision rule: Ply=1lz) >05<w'z >0
Gradient (unregularized): z(y — P(y = 1|z))
» SVM:

Decision rule: ¢y " 2 > ()

(Sub)gradient (unregularized): O if correct with margin of 1, else z(2y — 1)



Recap

» Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

» All gradient updates: “make it look more like the right thing and less
like the wrong thing”

» Next time: multiclass classification



