
CSE 5525: Founda.ons of
Speech and Language Processing

Lecture 2: Binary Classifica.on

Huan Sun (CSE@OSU)

 Many thanks to Prof. Greg DurreJ @ UT Aus.n for sharing his slides.

Administrivia

‣ Course website updates

‣ HW#1 has been out, due 09/09/2020

‣ Final Project: Start forming teams (2-3 students with diverse
background). Introduce yourself on Piazza and reach out to each
other.

This Lecture

‣ Linear classification fundamentals

‣ Three discriminative models: logistic regression, perceptron, SVM
‣ Different motivations but very similar update rules / inference!

‣ Optimization

‣ Sentiment analysis

Classifica(on

‣ Can delete bias if we augment feature
space:

‣ Datapoint with label

Classifica.on

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

 = [0.5, 1.6, 0.3]

 [0.5, 1.6, 0.3, 1]

x y 2 {0, 1}

f(x) 2 Rn

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

f(x)

w>f(x) > 0

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear func.ons are powerful!

‣ “Kernel trick” does this for “free,” but can be too expensive to use
in NLP applications, training is instead ofO(n2) O(n · (num feats))

Classifica.on: Sen.ment Analysis

this movie was great! would watch again

Nega.ve

Posi.ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here:
presence or absence of certain words (great, awful)

‣ Steps to classification:
‣ Turn examples like this into feature vectors
‣ Pick a model / learning algorithm
‣ Train weights on data to get our classifier

Feature Representa.on

this movie was great! would watch again Posi.ve

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0

‣ More sophis(cated feature mappings possible (?-idf), as well as lots of
other features: n-grams, character n-grams, parts of speech, lemmas, …

position 0 position 1 position 2 position 3 position 4

‣ Very large vector space (size of vocabulary), sparse features (how many?)

…f(x) = [

…

Genera.ve vs. Discrimina.ve Modeling

‣ Genera(ve models: probabilis(c models of P(x,y)

‣ Discrimina(ve models model P(y|x) directly, compute

‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

x = (x1, ..., xn) y 2 {0, 1}

P (y|x)‣ Compute , predict to classifyargmaxyP (y|x)

‣ Examples: Naive Bayes (see textbook), Hidden Markov Models

‣ Examples: logis(c regression

argmaxyP (y|x)

“proportional to”

‣ Cannot draw samples of x, but typically beSer classifiers

Logis(c Regression

Logis.c Regression

‣ To learn weights: maximize discrimina(ve log likelihood of data (log P(y|x))

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum over features

L({xj , yj}j=1,...,n) =
X

j

logP (yj |xj) corpus-level LL

one (posi(ve) example LL

Logis.c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv
of log

deriv
of exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis.c Regression

If P(+) is close to 1, make very liSle update
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi(ve example

‣ Gradient of wi on nega(ve example

If P(+) is close to 0, make very liSle update
Otherwise make wi look less like xji, which will decrease P(+)

xj(yj � P (yj = 1|xj))

= xji(�P (yj = +|xj))

‣ Can combine these gradients as
‣ Let yj = 1 for posi(ve instances, yj = 0 for nega(ve instances.

= xji(1� P (yj = +|xj))

Example
+(1) this movie was great! would watch again

(3) great poten@al but ended up being a flop —
+(2) I expected a great movie and leB happy

xj(yj � P (yj = 1|xj))

[contains great] [contains movie]
position 0 position 1

w = [0, 0]

1 1]f(x1) = [
1 1]f(x2) = [
1 0]f(x3) = [

P(y = 1 | x1)

w = [0.5, 0.5]

P (y = +|x) = logistic(w>x)

P(y = 1 | x2) = logis(c(1) ≈ 0.75

w = [0.75, 0.75] P(y = 1 | x3) = logis(c(0.75) ≈ 0.67

w = [0.08, 0.75] …

g = [0.5, 0.5]

g = [0.25, 0.25]

g = [-0.67, 0]

= exp(0)/(1 + exp(0)) = 0.5

Regulariza.on
‣ Regularizing an objec(ve can mean many things, including an L2-norm

penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfifng

‣ For most of the NLP models we build, explicit regulariza(on isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping
‣ Large numbers of sparse features are hard to overfit in a really bad way

Logis.c Regression: Summary
‣ Model

‣ Learning: gradient ascent on the (regularized) discriminative log-
likelihood

‣ Inference: for new x

argmaxyP (y|x)

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Perceptron/SVM

Perceptron

‣ Simple error-driven learning approach similar to logistic
regression

‣ Decision rule:

‣ Guaranteed to eventually separate the data if the data are
separable

‣ If incorrect: if positive,
if negative,

w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logistic Regressionw>x > 0

Support Vector Machines

‣ Many separating hyperplanes — is there a best one?

+++ +
+ +
++

- - -
-

--
--

-

Support Vector Machines

‣ Many separating hyperplanes — is there a best one?

++
+ +

+
+

++

- - -
-

--
--

-
margin

Support Vector Machines
‣ Constraint formula(on: find w via following quadra(c program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solu(on (data is generally non-separable) — need slack!

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa(sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec(ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently

Gradients on Posi.ve Examples
Logis(c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis.c
Perceptron

0-1

Lo
ss

w>x

*the led side shows the nega.ve of the gradients of the loss func.ons, as
we need to *minimize* the loss func.ons (i.e., w= w-g).

x if w>x < 1, else 0

Comparing Gradient Updates (Reference)

x(y � P (y = 1|x)) x(y � logistic(w>x))

Perceptron
if classified incorrectly

0 else

SVM
if not classified correctly with margin of 1

0 else

(2y � 1)x

(2y � 1)x

=

y = 1 for pos,
 0 for neg

Logis(c regression (unregularized)

Read more connections here: https://www.cs.utexas.edu/~gdurrett/courses/sp2020/perc-lr-connections.pdf

https://www.cs.utexas.edu/~gdurrett/courses/sp2020/perc-lr-connections.pdf

Op(miza(on

Structured Predic.on
‣ Four elements of a structured machine learning method:

‣ Model: probabilis(c, max-margin, deep neural network

‣ Objec(ve

‣ Inference: just maxes and simple expecta(ons so far, but will get harder

‣ Training: gradient descent?

Op.miza.on

‣ Stochas(c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op(mizes quadra(c instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Sefng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

‣ Can avg gradient over a few examples and apply update once (minibatch)

AdaGrad

Duchi et al. (2011)

‣ Op(mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for op(mizing deep models — more later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

Sen(ment Analysis

Sen.ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega(on)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for all
X following the not

+
+
—

Sen.ment Analysis

‣ Simple feature sets can do preSy well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sen.ment Analysis

Wang and Manning (2012)

Before neural nets had taken off
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be beSer for small data

81.5 89.5Kim (2014) CNNs

Sen.ment Analysis

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md

…

‣ Best systems now:
large pretrained
networks

‣ Stanford Sen(ment
Treebank (SST)
binary classifica(on

‣ 90 -> 97 over the
last 2 years

Recap

‣ Logis(c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ SVM:

Decision rule:

Decision rule: w>x � 0

P (y = 1|x) � 0.5 , w>x � 0

(Sub)gradient (unregularized): 0 if correct with margin of 1, else

x(y � P (y = 1|x))

x(2y � 1)

Recap

‣ Logis(c regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logis(c regression
has a similar update but is “soyer” due to its probabilis(c nature

‣ All gradient updates: “make it look more like the right thing and less
like the wrong thing”

‣ Next (me: mul(class classifica(on

